Hyperfine Interactions

, Volume 219, Issue 1–3, pp 41–48

Effect of Co2 +  content on the magnetic properties of CoxFe3 − xO4/SiO2 nanocomposites

  • J. Hua
  • M. Liu
  • L. Wang
  • S. C. Xu
  • M. Feng
  • H. B. Li
Article

Abstract

Non-stoichiometric CoxFe3 − xO4/SiO2 (x = 0.8, 0.9, 1.0, 1.1) nanocomposites have been prepared by sol-gel method. The structure, morphology and magnetic properties of the obtained samples were characterized by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy at room temperature. As the Co2 +  content increases, the average particle size of the spherical CoxFe3 − xO4 in the samples decreases and the lattice constants increases. The hyperfine fields for both A- and B-site decrease, while the fraction of Co2 +  occupying the A-site increases. Magnetization measurements show the saturation magnetization and coercivity of CoxFe3 − xO4/SiO2 decrease with increasing Co2 +  content. The decrease in magnetization results from the weakened A-B interactions between Fe3 + , and the change in coercivity can be related to the variation of Co2 +  at B-site and the decreasing particle size.

Keywords

Sol-gel method Nanocomposites Mössbauer spectroscopy Magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mathieu, A., Lotfi Ben, T., Frédéric, H., Leila, S., Françoise, V., Nader, Y., Jean-Marc, G., Souad, A., Fernand, F.: Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol. J. Phys., Condens. Mattter 23, 506001 (2011)CrossRefGoogle Scholar
  2. 2.
    Limaye, M.V., Singh, S.B., Date, S.K., Kothari, D., Reddy, V.R., Gupta, A., Sathe, V., Choudhary, R.J., Kulkarni, S.K.: High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J. Phys. Chem. B 113, 9070–9076 (2009)CrossRefGoogle Scholar
  3. 3.
    Chinnasamy, C.N., Jeyadevan, B., Shinoda, K., Tohji, K., Djayaprawira, D.J., Takahashi, M., Joseyphus, R.J., Narayanasamy, A.: Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4 nanoparticles. Appl. Phys. Lett. 83, 2862–2864 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Cannas, C., Musinu, A., Ardu, A., Orrù, F., Peddis, D., Casu, M., Sanna, R., Angius, F., Diaz, G., Piccaluga, G.: CoFe2O4 and CoFe2O4/SiO2 core/shell nanoparticles: magnetic and spectroscopic study. Chem. Mater. 22, 3353–3361 (2010)CrossRefGoogle Scholar
  5. 5.
    Ayyappan, S., Mahadevan, S., Chandramohan, P., Srinivasan, M.P., Philip, J., Raj, B.: Influence of Co2 +  ion concentration on the size, magnetic properties, and purity of CoFe2O4 spinel ferrite nanoparticles. J. Phys. Chem. C 114, 6334–6341 (2010)CrossRefGoogle Scholar
  6. 6.
    Shao, H., Huang, Y., Lee, H., Suh, Y.J., Kim, C.O.: Effect of PVP on the morphology of cobalt nanoparticles prepared by thermal decomposition of cobalt acetate. Curr. Appl. Phys. 6(Supplement 1), e195–e197 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Pramanik, N.C., Fujii, T., Nakanishi, M., Takada, J.: Effect of Co2 +  ion on the magnetic properties of sol-gel cobalt ferrite thin films. J. Mater. Chem. 14, 3328–3332 (2004)CrossRefGoogle Scholar
  8. 8.
    Cedeño-Mattei, Y., Perales-Pérez, O., Uwakweh, O.N.C.: Synthesis of high-coercivity non-stoichiometric cobalt ferrite nanocrystals: structural and magnetic characterization. Mater. Chem. Phys. 132, 999–1006 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhang, S., Dong, D., Sui, Y., Liu, Z., Wang, H., Qian, Z., Su, W.: Preparation of core shell particles consisting of cobalt ferrite and silica by sol–gel process. J. Alloy. Compd. 415, 257–260 (2006)CrossRefGoogle Scholar
  10. 10.
    Praveena, K., Sadhana, K., Ramana Murthy, S.: Structural and magnetic properties of NiCuZn ferrite/SiO2 nanocomposites. J. Magn. Magn. Mater. 323, 2122–2128 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Woltersdorf, J., Nepijko, A.S., Pippel, E.: Dependence of lattice parameters of small particles on the size of the nuclei. Surf. Sci. 106, 64–69 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Sreja, V., Vijayanand, S., Deka, S., Joy, P.A.: Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method. Hyperfine Interact. 183, 99–107 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Sanchez, R.D., Rivas, J., Vaqueiro, P., Lopez-Quintela, M.A., Caeiro, D.: Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method. J. Magn. Magn. Mater. 247, 92–98 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Kumar, L., Kar, M.: Influence of Al3 +  ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J. Magn. Magn. Mater. 323, 2042–2048 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Lee, J.G., Park, J.Y., Kim, C.S.: Growth of ultra-fine cobalt ferrite particles by a sol–gel method and their magnetic properties. J. Magn. Magn. Mater. 33, 3965–3968 (1998)Google Scholar
  17. 17.
    Bhide, V.G.: Mössbauer Effect and its Applications. Tata McGraw-Hill (1973)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • J. Hua
    • 1
    • 2
  • M. Liu
    • 1
  • L. Wang
    • 1
  • S. C. Xu
    • 1
  • M. Feng
    • 1
  • H. B. Li
    • 1
    • 2
  1. 1.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversitySipingChina
  2. 2.State Key Laboratory of Inorganic Synthesis and Preparative ChemistryJilin UniversityChangchunChina

Personalised recommendations