Hyperfine Interactions

, Volume 219, Issue 1–3, pp 33–40

Possible cage motion of interstitial Fe in α-Al2O3

  • H. P. Gunnlaugsson
  • K. Johnston
  • H. Masenda
  • R. Mantovan
  • T. E. Mølholt
  • K. Bharuth-Ram
  • H. P. Gislason
  • G. Langouche
  • M. B. Madsen
  • D. Naidoo
  • S. Ólafsson
  • G. Weyer
  • the ISOLDE Collaboration
Article

Abstract

In addition to spectral components due to Fe2 +  and Fe3 + , a single line is observed in emission Mössbauer spectra following low fluence (<1015 cm − 2) implantation of 57Fe*, 57Mn and 57Co in α-Al2O3. For the 57Co and 57Mn implantations, the intensity of the single line is found to depend on the emission angle relative to the crystal symmetry axis. This angular dependence can be explained by a non-isotropic f-factor and/or motion of the Fe ion between sites in an interstitial cage. It is argued that interstitial cage motion is a more likely explanation, as this can account for the lack of quadrupole splitting of the line.

Keywords

α-Al2O3 Ion-implantation 57Mn Emission Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wertheim, G.K., Remaika, J.P.: Mössbauer effect hyperfine structure of trivalent Fe57 in Corundum. Phys. Lett. 10, 14–15 (1964)ADSCrossRefGoogle Scholar
  2. 2.
    Dézsi, I., Szucs, I., Fetzer, Cs., Pattyn, H., Langouche, G., Pfannes, H.D., Magalhães-Paniago, R.: Local interactions of 57Fe after electron capture of 57Co implanted in α-Al2O3 and in α-Fe2O3. J. Phys., Condens. Matter 12, 2291–2296 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Gunnlaugsson, H.P., Mantovan, R., Mølholt, T.E., Naidoo, D., Johnston, K., Masenda, H., Bharuth-Ram, K., Langouche, G., Ólafsson, S., Sielemann, R., Weyer, G., Kobayashi, Y., ISOLDE Collaboration: Mössbauer spectroscopy of 57Fe in α-Al2O3 following implantation of 57Mn ∗ . Hyperfine Interact. 198, 5–14 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Kobayashi, Y., Nagatomo, T., Yamada, Y., Mihara, M., Sato, W., Miyazaki, J., Sato, S., Kitagawa, A., Kubo, M.K.: Anticoincidence measurement of 57Fe Mössbauer spectra obtained after 57Mn implantation: application to Fe in α-Al2O3. Hyperfine Interact. 198, 173–178 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Laubach, S., Schwalbach, P., Hartick, M., Kankeleit, E., Keck B., Sielemann, R.: Implantation of Coulomb excited 57Fe. Hyperfine Interact. 53, 75–92 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    Dézsi, I., Coussement, R., Feher, S., Langouche, G., Fetzer, C.: The charge states of iron in insulators implanted with 57Co and 57Fe. Hyperfine Interact. 29, 1275–1278 (1986)ADSCrossRefGoogle Scholar
  7. 7.
    McHargue, C.J., Farlow, G.C., Sklad, P.S., White, C.W., Perez, A., Kornilios, N., Marest, G.: Iron ion implantation effects in Sapphire. Nucl. Instrum. Methods B 19/20, 813–821 (1987)CrossRefGoogle Scholar
  8. 8.
    Kündig, W., Hargrove, R.S.: Electron hopping in magnetite. Solid State Commun. 7, 223–227 (1969)CrossRefGoogle Scholar
  9. 9.
    Fedoseyev, V.N., Bätzner, K., Catherall, R., Evens, A.H.M., Forkel-Wirth, D., Jonsson, O.C., Kugler, E., Lettry, J., Mishin, V.I., Ravn, H.L., Weyer, G., the ISOLDE Collaboration: Chemically selective laser ion source of manganese. Nucl. Instrum. Methods B 126, 88–91 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Gunnlaugsson, H.P., Weyer, G., Mantovan, R., Naidoo, D., Sielemann, R., Bharuth-Ram, K., Fanciulli, M., Johnston, K., Olafsson, S., Langouche, G.: UIsothermal defect annealing in semiconductors investigated by time-delayed Mössbauer spectroscopy: application to ZnO. Hyperfine Interact. 188, 85–89 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Gunnlaugsson, H.P., Sielemann, R., Mølholt, T.E., Dlamini, W.B., Johnston, K., Mantovan, R., Masenda, H., Naidoo, D., Sibanda, W.N., Bharuth-Ram, K., Fanciulli, M., Gíslason, H.P., Langouche, G., Ólafsson, S., Weyer, G., the ISOLDE Collaboration: Magnetism in iron implanted oxides: a status report. Hyperfine Interact. 197, 43–52 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Mølholt, T.E., Mantovan, R., Gunnlaugsson, H.P., Naidoo, D., Ólafsson, S., Bharuth-Ram, K., Fanciulli, M., Johnston, K., Kobayashi, Y., Langouche, G. Masenda, H., Sielemann, R., Weyer G., Gíslason, H.P.: Observation of spin-lattice relaxations of dilute Fe3 +  in MgO by Mössbauer spectroscopy. Hyperfine Interact. 197, 89–94 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Goldanskii, V.I., Makarov, E.F.: Fundamentals of gamma-resonance spectroscopy. In: Goldanskii, V.I., Herber, R.H. (eds.) Chemical Applications of Mössbauer Spectroscopy, pp. 1–113. Academic Press, New York (1968)Google Scholar
  14. 14.
    Petry, W., Vogl, G.: Mössbauer study of localized diffusion in an interstitial cage I. Model calculations. Z. Phys., B Condens. Matter 45, 207–213 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    Yoshida, Y., Menningen, M., Sielemann, R., Vogl, G., Weyer, G., Schröder, K.: Local atomic-jump process of iron in α-Zr. Phys. Rev. Lett. 61, 195–198 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Tjon, J.A., Blume, M.: Mössbauer spectra in a fluctuating environment II. Randomly varying electric field gradients. Phys. Rev. 165, 456–461 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • H. P. Gunnlaugsson
    • 1
  • K. Johnston
    • 2
  • H. Masenda
    • 3
  • R. Mantovan
    • 4
  • T. E. Mølholt
    • 5
  • K. Bharuth-Ram
    • 6
    • 7
  • H. P. Gislason
    • 5
  • G. Langouche
    • 8
  • M. B. Madsen
    • 9
  • D. Naidoo
    • 3
  • S. Ólafsson
    • 5
  • G. Weyer
    • 1
  • the ISOLDE Collaboration
    • 2
  1. 1.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  2. 2.Physics DepartmentISOLDE/CERNGeneva 23Switzerland
  3. 3.School of PhysicsUniversity of the WitwatersrandWITSSouth Africa
  4. 4.Laboratorio MDMIMM-CNRAgrate Brianza (MB)Italy
  5. 5.Science InstituteUniversity of IcelandReykjavíkIceland
  6. 6.School of PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  7. 7.iThemba LABSSomerset WestSouth Africa
  8. 8.Instituut voor Kern- en StralingsfysicaUniversity of LeuvenLeuvenBelgium
  9. 9.Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations