Hyperfine Interactions

, Volume 218, Issue 1–3, pp 23–28 | Cite as

151Eu Mössbauer study of luminescent Y2O3:Eu3 +  core-shell nanoparticles

  • E. Kuzmann
  • A. Vértes
  • G. Bohus
  • V. Hornok
  • A. Oszkó
  • I. Dékány
Article

Abstract

151Eu Mössbauer spectroscopy was applied to distinguish among different Eu microenvironments and phases in spherical Y2O3:Eu3 +  and core-shell Y2O3@Eu3 +  phosphor nanoparticles prepared by using homogeneous precipitation method. 151Eu isomer shift revealed that Eu atoms exist only in oxidation state Eu3 +  in all spherical and core-shell phosphors. Significant differences have been found between the Mössbauer parameters (isomer shift, principal component of EFG and linewidth) characteristic of spherical Y2O3:Eu3 +  and core-shell Y2O3@Eu3 +  phosphor nanoparticles. The Mössbauer parameters of spherical Y2O3:Eu3 +  were associated with Eu substituting Y in the Y2O3, while Mössbauer parameters of core-shell Y2O3@Eu3 +  phosphor were attributed to Eu being in the Eu2O3 shell, proving the structural model and the successful preparation of these phosphors.

Keywords

Phosphors Eu doped yttrium oxides Core-shell nanoparticles Spherical nanoparticles 151Eu Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Silver, J., Martinez-Rubio, M.I., Ireland, T.G., Fern, G.R., Withnall, R.: J. Phys. Chem. B 105, 948–953 (2001)CrossRefGoogle Scholar
  2. 2.
    Davolos, M.R., Feliciano, S., Pires, A.M., Marques, R.F.C., Jafelicci, Jr., M.: J. Solid State Chem. 171, 268–272 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Kubrin, R., Bauhofer, W.: J. Lumin. 129, 1060–1066 (2009)CrossRefGoogle Scholar
  4. 4.
    Gai, S., Yang, P., Hao, J., Wang, W., Niu, N., He, F., Wang, D.: Microporous Mesoporous Mater. 131, 128–135 (2010)CrossRefGoogle Scholar
  5. 5.
    Liu, G., Hong, G.: J. Solid State Chem. 178, 1647–1651 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Bohus, G., Hornok, V., Oszkó, A., Vértes, A., Kuzmann, E., Dékány, I.: Colloids Surf., A Physicochem. Eng. Asp. 405, 6–13 (2012)CrossRefGoogle Scholar
  7. 7.
    Fraknoy-Körös, V., Gelencsér, P., Nagy, I.C., Vértes, A.: Radiochem. Radioanal. Lett. 44, 337–346 (1980)Google Scholar
  8. 8.
    Klencsár, Z., Kuzmann, E., Vértes, A.: J. Radioanal. Nucl. Chem. 210, 105–118 (1996)CrossRefGoogle Scholar
  9. 9.
    Bauminger, E., Kalvius, G.M., Novik, I.: In: Shenoy, G., Wagner, F. (eds.) Mössbauer Isomer Shifts, pp. 663–758. North Holland, Amsterdam, New York, Oxford (1978)Google Scholar
  10. 10.
    Stevens, J.G., Stevens, V. (eds.): Mössbauer Reference and Data Index. Plenum Press, New York (1966–1978)Google Scholar
  11. 11.
    Hintzen, H.T., van Noort, H.M.: J. Phys. Chem. Solids 49, 873–881 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Concas, G., Spano, G., Bettinellia, M., Speghinia, A.: Z. Naturforsch. 58a, 551–557 (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • E. Kuzmann
    • 1
  • A. Vértes
    • 1
  • G. Bohus
    • 2
  • V. Hornok
    • 3
  • A. Oszkó
    • 3
  • I. Dékány
    • 3
    • 4
  1. 1.Laboratory of Nuclear Chemistry, Institute of ChemistryEötvös UniversityBudapestHungary
  2. 2.Department of Physical Chemistry and Materials SciencesUniversity of SzegedSzegedHungary
  3. 3.Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary
  4. 4.Department of Medical ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations