Advertisement

Hyperfine Interactions

, Volume 222, Issue 1–3, pp 1–13 | Cite as

NQR investigation and characterization of cocrystals and crystal polymorphs

  • Janez SeligerEmail author
  • Veselko Žagar
  • Tetsuo Asaji
Article

Abstract

The application of 14N NQR to the study of cocrystals and crystal polymorphs is reviewed. In ferroelectric and antiferroelectric organic cocrystals 14N NQR is used to determine proton position in an N-H...O hydrogen bond and proton displacement below TC. In cocrystal isonicitinamide – oxalic acid (2:1) 14N NQR is used to distinguish between two polymorphs and to determine the type of the hydrogen bond (N...H-O). The difference in the 14N NQR spectra of cocrystal formers and cocrystal is investigated in case of carbamazepine, saccharin and carbamazepine - saccharin (1:1). The experimental resolution allows an unambiguous distinction between the 14N NQR spectrum of the cocrystal and the 14N NQR spectra of the cocrystal formers. The possibility of application of NQR and double resonance for the determination of the inhomogeneity of the sample and for the study of the life time of an unstable polymorph is discussed.

Keywords

Nuclear quadrupole interaction Cocrystal Hydrogen bond Ferroelectric API 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaosa, N., Tokura, Y.: Nat. Mater. 4, 163 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Horiuchi, S., Tokura, Y.: Organic ferroelectrics. Nat. Mater. 7, 357 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Horiuchi, S., Kumai, R., Tokura, Y.: J. Am. Chem. Soc. 127, 5010 (2005)CrossRefGoogle Scholar
  4. 4.
    Horiuchi, S., Kumai, R., Tokura, Y.: Angew. Chem. Int. Ed. 46, 3497 (2007)CrossRefGoogle Scholar
  5. 5.
    Horiuchi, S., Hasegawa, T., Tokura, Y.: Mol. Cryst. Liq. Cryst. 455, 295 (2006)CrossRefGoogle Scholar
  6. 6.
    Horiuchi, S., Hasegawa, T., Tokura, Y.: J. Phys. Soc. Jpn. 75, 051016 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Nanjwade, V.K., Manvi, F.V., Ali, S.M., Nanjwade, B.K., Maste, M.M.: J. App. Pharm. Sci. 1(08), 01–05 (2011)Google Scholar
  8. 8.
    Schultheiss, N., Newman, A.: Cryst. Growth Des. 9, 2950–2967 (2009)CrossRefGoogle Scholar
  9. 9.
    Seliger, J.: Nuclear quadrupole resonance: theory. In: Lindon, J.C., Tranter, G.E., Holmes, J.L. (eds.) Encyclopedia of Spectroscopy and Spectrometry, pp. 1672–1680. Academic Press, San Diego etc. (2000)Google Scholar
  10. 10.
    Seliger, J.: Acta Chim. Slov. 58, 471–477 (2011)Google Scholar
  11. 11.
    Seliger, J., Žagar, V.: J. Magn. Reson. 193, 54–62 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Blinc, R., Mali, M., Osredkar, R., Prelesnik, A., Seliger, J., Zupancic, I., Ehrenberg, L.: J. Chem. Phys. 57, 5087–5093 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    Edmonds, D.T.: Phys. Rep. 29, 234–290 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    Seliger, J., Žagar, V., Blinc, R.: J. Magn. Reson. A 106, 214–222 (1994)CrossRefGoogle Scholar
  15. 15.
    Seliger, J., Žagar, V., Blinc, R.: Z. Naturforsch. A 49, 31–34 (1994)Google Scholar
  16. 16.
    Seliger, J., Osredkar, R., Mali, M., Blinc, R.: J. Chem. Phys. 65, 2887–2891 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    Seliger, J., Blinc, R., Arend, H., Kind, R.: Z. Phys. B 25, 189–195 (1976)ADSCrossRefGoogle Scholar
  18. 18.
    Stephenson, D., Smith, J.A.S.: Proc. Roy. Soc. A 416, 149–178 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    Seliger, J., Žagar, V.: J. Magn. Reson. 199, 199–207 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Seliger, J., Žagar, V.: Appl. Magn. Reson. (2012). doi: 10.1007/s00723-011-0303-8
  21. 21.
    Gotoh, K., Asaji, T., Ishida, H.: Acta Cryst. C63, o17–o20 (2007)Google Scholar
  22. 22.
    Kumai, R., Horiuchi, S., Okimoto, Y., Tokura, Y.: J. Chem. Phys. 125, 084715 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Asaji, T., Seliger, J., Žagar, V., Sekiguchi, M., Watanabe, J., Gotoh, K., Ishida, H., Vrtnik, S., Dolinšek, J.: J. Phys. Condens. Matter. 19, 226203 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Seliger, J., Žagar, V., Asaji, T., Gotoh, K., Ishida, H.: Phys. Chem. Chem. Phys. 13, 9165–9172 (2011)CrossRefGoogle Scholar
  25. 25.
    Seliger, J.: Acta Chim. Slov. 58, 471–477 (2011)Google Scholar
  26. 26.
    Schmidtmann, M., Farrugia, L.J., Middlemiss, D.S., Gutmann, M.J., McIntyre, G.J., Wilson, C.C.: J. Phys. Chem. A 113, 13985–13997 (2009)CrossRefGoogle Scholar
  27. 27.
    Vishweshwar, P., Nangia, A., Lynch, V.M.: Cryst. Growth Des. 3, 783–790 (2003)CrossRefGoogle Scholar
  28. 28.
    Seliger, J., Žagar, V.: J. Phys. Chem. A 114, 12083–12087 (2010)CrossRefGoogle Scholar
  29. 29.
    Lang, M., Kampf, J., Matzger, A. J. : J. Pharm. Sci. 91, 1186–1190 (2002) and the references cited thereinCrossRefGoogle Scholar
  30. 30.
    Okaya, Y.: Acta Cryst. B25, 2257–2263 (1969)Google Scholar
  31. 31.
    Porter III, W.W., Elie, S.C., Matzger, A.J.: Cryst. Growth Des. 8, 14–16 (2008)CrossRefGoogle Scholar
  32. 32.
    Fleischman, S.G., Kuduva, S.S., McMahon, J.A., Moulton, B., Bailey Walsh, R.D., Rodríguez-Hornedo, N., Zaworotko, M.: Cryst. Growth Des. 3, 909–919 (2003)CrossRefGoogle Scholar
  33. 33.
    Seliger, J., Žagar, V. (2012). doi: 10.1016/j.ssnmr.2012.09.001
  34. 34.
    Blinc, R., Seliger, J., Zidanšek, A., Žagar, V., Milia, F., Robert, H.: Solid State Nuclear Magn. Reson. 30, 61–68 (2006)CrossRefGoogle Scholar
  35. 35.
    Seliger, J., Žagar, V., Blinc, R.: Phys. Rev. B 47, 14753–14756 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Jozef Stefan InstituteLjubljanaSlovenia
  2. 2.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.EN-FIST Centre of ExcellenceLjubljanaSlovenia
  4. 4.Department of Chemistry, College of Humanities and SciencesNihon UniversityTokyoJapan

Personalised recommendations