Hyperfine Interactions

, Volume 213, Issue 1–3, pp 191–198 | Cite as

Beam instrumentation for the Ultra-low energy Storage Ring (USR)

  • M. Panniello
  • K. U. Kühnel
  • A. Papash
  • J. Harasimowicz
  • M. Putignano
  • M. R. F. Siggel-King
  • Carsten P. Welsch
Article
  • 59 Downloads

Abstract

The electrostatic Ultra-low energy Storage Ring (USR) at the future Facility for Low energy Antiproton and Ion Research (FLAIR) will make available antiprotons from 300 keV down to 20 keV beam energy. This multipurpose machine puts challenging demands on the beam instrumentation due to the varied bunch structure (ultra-short bunches of 1–2 ns up to a quasi-DC beam structure on the other), together with variable very low beam energies, ultra-low currents of down to 1 nA (or even less in the transfer lines which means less than 2 × 107 particles). Thus, the development of new diagnostic devices is required as most of the standard techniques are not suitable. Within the QUASAR Group, the necessary beam instrumentation for the commissioning phase and standard operation of the USR, as well as advanced techniques such as a gas curtain-jet beam profile monitor, have been developed and prototypes of all devices have been built up. This paper presents the design of all beam diagnostics devices for the USR and summarizes the results from first measurements.

Keywords

Antiprotons Beam Diagnostics Instrumentation Low energy Storage ring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Welsch, C.P., et al.: Exploring sub-femtosecond correlated dynamics with an ultra-low energy electrostatic storage ring. AIP Conf. Proc. 796, 266–271 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Harasimowicz, J., et al.: Beam instrumentation for the future ultra-low energy electrostatic storage ring at FLAIR. Hyperfine Interact. 194, 177–181 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Harasimowicz, J., Cosentino, L., Finocchiaro, P., Pappalardo, A., Welsch, C.P.: Rev. Sci. Instrum. 81, 103302 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Putignano, M., Welsch, C.P.: Optimization studies of planar supersonic gas-jets for beam profile monitor applications. In: Proc. IPAC2010, pp. 1149–1151 (2010)Google Scholar
  5. 5.
    Hori, M., Hanke, K.: Nuclr. Instrum. Methods Phys. Res. A 588, 359 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Das, S., Källberg, A.: Manne Siegbahn, Diagnostics for DESIREE, Workshop on Low Current Low Energy Beam Diagnostics (2009)Google Scholar
  7. 7.
    Albert, A., et al.: A heavy-ion beam current monitor with a wide dynamic range. Nucl. Instrum. Methods Phys. Res. A 317, 397–398 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    Ostroumov, P.N., et al.: Design and test of a beam profile monitoring device for low intensity radioactive beams. Rev. Sci. Instrum. 73, 56–62 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Rothard, H., et al.: Secondary-electron velocity spectra and angular distributions from ions penetrating thin solids. Nucl. Instrum. Methods Phys. Res. B 48, 616–620 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Harasimowicz, J., Welsch, C.P.: Faraday Cup for low-energy low-intensity beam Measurements at the USR. In: Proc. BIW2010 (2010)Google Scholar
  11. 11.
    Harasimowicz, J., Welsch, C.P.: Beam position monitor development for the USR. In: Proc. BIW2010 (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Panniello
    • 1
  • K. U. Kühnel
    • 1
  • A. Papash
    • 1
  • J. Harasimowicz
    • 2
    • 3
  • M. Putignano
    • 2
    • 3
  • M. R. F. Siggel-King
    • 2
    • 3
  • Carsten P. Welsch
    • 2
    • 3
  1. 1.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  2. 2.Cockcroft InstituteDaresburyUK
  3. 3.University of LiverpoolLiverpoolUK

Personalised recommendations