Advertisement

Hyperfine Interactions

, Volume 209, Issue 1–3, pp 43–49 | Cite as

The AEGIS experiment at CERN

Measuring the free fall of antihydrogen
  • The AEGIS Collaboration
  • A. Kellerbauer
  • Y. Allkofer
  • C. Amsler
  • A. S. Belov
  • G. Bonomi
  • P. Bräunig
  • J. Bremer
  • R. S. Brusa
  • G. Burghart
  • L. Cabaret
  • C. Canali
  • F. Castelli
  • K. Chlouba
  • S. Cialdi
  • D. Comparat
  • G. Consolati
  • L. Dassa
  • L. Di Noto
  • A. Donzella
  • M. Doser
  • A. Dudarev
  • T. Eisel
  • R. Ferragut
  • G. Ferrari
  • A. Fontana
  • P. Genova
  • M. Giammarchi
  • A. Gligorova
  • S. N. Gninenko
  • S. Haider
  • J. P. Hansen
  • F. Haug
  • S. D. Hogan
  • L. V. Jørgensen
  • T. Kaltenbacher
  • D. Krasnický
  • V. Lagomarsino
  • S. Mariazzi
  • V. A. Matveev
  • F. Merkt
  • F. Moia
  • G. Nebbia
  • P. Nédélec
  • T. Niinikoski
  • M. K. Oberthaler
  • D. Perini
  • V. Petráček
  • F. Prelz
  • M. Prevedelli
  • C. Regenfus
  • C. Riccardi
  • J. Rochet
  • O. Røhne
  • A. Rotondi
  • M. Sacerdoti
  • H. Sandaker
  • M. Špaček
  • J. Storey
  • G. Testera
  • A. Tokareva
  • D. Trezzi
  • R. Vaccarone
  • F. Villa
  • U. Warring
  • S. Zavatarelli
  • A. Zenoni
Article

Abstract

After the first production of cold antihydrogen by the ATHENA and ATRAP experiments ten years ago, new second-generation experiments are aimed at measuring the fundamental properties of this anti-atom. The goal of AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is to test the weak equivalence principle by studying the gravitational interaction between matter and antimatter with a pulsed, cold antihydrogen beam. The experiment is currently being assembled at CERN’s Antiproton Decelerator. In AEGIS, antihydrogen will be produced by charge exchange of cold antiprotons with positronium excited to a high Rydberg state (n > 20). An antihydrogen beam will be produced by controlled acceleration in an electric-field gradient (Stark acceleration). The deflection of the horizontal beam due to its free fall in the gravitational field of the earth will be measured with a moiré deflectometer. Initially, the gravitational acceleration will be determined to a precision of 1%, requiring the detection of about 105 antihydrogen atoms. In this paper, after a general description, the present status of the experiment will be reviewed.

Keywords

Antimatter Antihydrogen Gravity Matter interferometry Deflectometry Weak equivalence principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heckel, B., et al.: Adv. Space Res. 25, 1225 (2000). doi: 10.1016/S0273-1177(99)00995-3 ADSCrossRefGoogle Scholar
  2. 2.
    Steigman, G.: Annu. Rev. Astron. Astrophys. 14, 339 (1976). doi: 10.1146/annurev.aa.14.090176.002011 Google Scholar
  3. 3.
    Fairbank, W.M., et al.: In: Bertotti, B. (ed.) International School of Physics “Enrico Fermi”, p. 310. Academic Press, New York (1974)Google Scholar
  4. 4.
    Holzscheiter, M.H., et al.: Nucl. Phys. A 558, 709c (1993). doi: 10.1016/0375-9474(93)90432-W ADSCrossRefGoogle Scholar
  5. 5.
    Amoretti, M., et al.: Nature 419, 456 (2002). doi: 10.1038/nature01096 ADSCrossRefGoogle Scholar
  6. 6.
    Gabrielse, G., et al.: Phys. Rev. Lett. 89, 213401 (2002). doi: 10.1103/PhysRevLett.89.213401 ADSCrossRefGoogle Scholar
  7. 7.
    Drobychev, G., et al.: Proposal to the SPS Experiments Committee CERN-SPSC-2007-017, CERN. http://cdsweb.cern.ch/record/1037532 (2007)
  8. 8.
    Kellerbauer, A., et al.: Nucl. Instrum. Methods B 266, 351 (2008). doi: 10.1016/j.nimb.2007.12.010 ADSCrossRefGoogle Scholar
  9. 9.
    Hémery, J.Y., Maury, S.: Nucl. Phys. A 655, c345 (1999). doi: 10.1016/S0375-9474(99)00223-7 ADSCrossRefGoogle Scholar
  10. 10.
    Gidley, D.W., Peng, H.G., Vallery, R.S.: Annu. Rev. Mater. Res. 36, 49 (2006). doi: 10.1146/annurev.matsci.36.111904.135144 ADSCrossRefGoogle Scholar
  11. 11.
    Mariazzi, S., et al.: Appl. Surf. Sci. 255, 191 (2008). doi: 10.1016/j.apsusc.2008.05.207 ADSCrossRefGoogle Scholar
  12. 12.
    Vallery, R.S., Zitzewitz, P.W., Gidley, D.W.: Phys. Rev. Lett. 90, 203402 (2003). doi: 10.1103/PhysRevLett.90.203402 ADSCrossRefGoogle Scholar
  13. 13.
    Mariazzi, S., Salemi, A., Brusa, R.S.: Phys. Rev. B 78, 085428 (2008). doi: 10.1103/PhysRevB.78.085428 ADSCrossRefGoogle Scholar
  14. 14.
    Mariazzi, S., Bettotti, P., Brusa, R.S.: Phys. Rev. Lett. 104, 243401 (2010). doi: 10.1103/PhysRevLett.104.243401 ADSCrossRefGoogle Scholar
  15. 15.
    Castelli, F., et al.: Phys. Rev. A 78, 052512 (2008). doi: 10.1103/PhysRevA.78.052512 ADSCrossRefGoogle Scholar
  16. 16.
    Cialdi, S., et al.: Nucl. Instrum. Methods B 269, 1527 (2011). doi: 10.1016/j.nimb.2011.04.108 ADSCrossRefGoogle Scholar
  17. 17.
    Charlton, M.: Phys. Lett. A 143, 143 (1990). doi: 10.1016/0375-9601(90)90665-B ADSCrossRefGoogle Scholar
  18. 18.
    Hessels, E.A., Homan, D.M., Cavagnero, M.J.: Phys. Rev. A 57, 1668 (1998). doi: 10.1103/PhysRevA.57.1668 ADSCrossRefGoogle Scholar
  19. 19.
    Storry, C.H., et al.: Phys. Rev. Lett. 93, 263401 (2004). doi: 10.1103/PhysRevLett.93.263401 ADSCrossRefGoogle Scholar
  20. 20.
    Vliegen, E., Merkt, F.: J. Phys. B 39, L241 (2006). doi: 10.1088/0953-4075/39/11/L03 ADSCrossRefGoogle Scholar
  21. 21.
    Vliegen, E., et al.: Phys. Rev. A 76, 023405 (2007). doi: 10.1103/PhysRevA.76.023405 ADSCrossRefGoogle Scholar
  22. 22.
    Zehnder, L.: Z. Instrumentenkd. 11, 275 (1891)Google Scholar
  23. 23.
    Mach, L.: Z. Instrumentenkd. 12, 89 (1892)Google Scholar
  24. 24.
    Oberthaler, M.K., et al.: Phys. Rev. A 54, 3165 (1996). doi: 10.1103/PhysRevA.54.3165 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • The AEGIS Collaboration
  • A. Kellerbauer
    • 1
  • Y. Allkofer
    • 2
  • C. Amsler
    • 2
  • A. S. Belov
    • 3
  • G. Bonomi
    • 4
  • P. Bräunig
    • 5
  • J. Bremer
    • 6
  • R. S. Brusa
    • 7
  • G. Burghart
    • 6
  • L. Cabaret
    • 8
  • C. Canali
    • 2
  • F. Castelli
    • 9
  • K. Chlouba
    • 10
  • S. Cialdi
    • 9
  • D. Comparat
    • 8
  • G. Consolati
    • 11
  • L. Dassa
    • 4
  • L. Di Noto
    • 7
  • A. Donzella
    • 4
  • M. Doser
    • 6
  • A. Dudarev
    • 6
  • T. Eisel
    • 6
  • R. Ferragut
    • 11
  • G. Ferrari
    • 12
  • A. Fontana
    • 13
  • P. Genova
    • 14
  • M. Giammarchi
    • 15
  • A. Gligorova
    • 16
  • S. N. Gninenko
    • 3
  • S. Haider
    • 6
  • J. P. Hansen
    • 16
  • F. Haug
    • 6
  • S. D. Hogan
    • 17
  • L. V. Jørgensen
    • 6
  • T. Kaltenbacher
    • 6
  • D. Krasnický
    • 18
  • V. Lagomarsino
    • 18
  • S. Mariazzi
    • 19
  • V. A. Matveev
    • 3
  • F. Merkt
    • 17
  • F. Moia
    • 11
  • G. Nebbia
    • 20
  • P. Nédélec
    • 21
  • T. Niinikoski
    • 6
  • M. K. Oberthaler
    • 5
  • D. Perini
    • 6
  • V. Petráček
    • 10
  • F. Prelz
    • 15
  • M. Prevedelli
    • 22
  • C. Regenfus
    • 2
  • C. Riccardi
    • 14
  • J. Rochet
    • 2
  • O. Røhne
    • 23
  • A. Rotondi
    • 14
  • M. Sacerdoti
    • 15
  • H. Sandaker
    • 16
  • M. Špaček
    • 10
  • J. Storey
    • 2
  • G. Testera
    • 24
  • A. Tokareva
    • 3
  • D. Trezzi
    • 15
  • R. Vaccarone
    • 24
  • F. Villa
    • 9
  • U. Warring
    • 1
  • S. Zavatarelli
    • 24
  • A. Zenoni
    • 4
  1. 1.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  2. 2.Physics InstituteUniversity of ZurichZürichSwitzerland
  3. 3.Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  4. 4.Department of Mechanical and Industrial EngineeringUniversity of BresciaBresciaItaly
  5. 5.Kirchhoff Institute for PhysicsUniversity of HeidelbergHeidelbergGermany
  6. 6.Physics DepartmentEuropean Organisation for Nuclear ResearchGenève 23Switzerland
  7. 7.Department of PhysicsUniversity of TrentoPovo (Trento)Italy
  8. 8.Centre national de la recherche scientifique, Laboratoire Aimé CottonOrsay CedexFrance
  9. 9.Department of PhysicsUniversity of MilanoMilanoItaly
  10. 10.Department of PhysicsCzech Technical University in PraguePraha 1Czech Republic
  11. 11.Department of PhysicsPolitecnico di MilanoMilanoItaly
  12. 12.Istituto Nazionale di OtticaConsiglio Nazionale delle RicercheFirenzeItaly
  13. 13.Istituto Nazionale di Fisica Nucleare, Sezione di PaviaPaviaItaly
  14. 14.Department of Nuclear and Theoretical PhysicsUniversity of PaviaPaviaItaly
  15. 15.Istituto Nazionale di Fisica Nucleare, Sezione di MilanoMilanoItaly
  16. 16.Institute of Physics and TechnologyUniversity of BergenBergenNorway
  17. 17.Laboratory for Physical ChemistryETH ZurichZürichSwitzerland
  18. 18.Department of PhysicsUniversity of GenovaGenovaItaly
  19. 19.Istituto Nazionale di Fisica Nucleare, Gruppo collegato di TrentoPovo (Trento)Italy
  20. 20.Istituto Nazionale di Fisica Nucleare, Sezione di PadovaPadovaItaly
  21. 21.Institut de Physique Nucléaire de LyonClaude Bernard University Lyon 1Villeurbanne CedexFrance
  22. 22.Department of PhysicsUniversity of BolognaBolognaItaly
  23. 23.Department of PhysicsUniversity of OsloOsloNorway
  24. 24.Istituto Nazionale di Fisica Nucleare, Sezione di GenovaGenovaItaly

Personalised recommendations