Hyperfine Interactions

, Volume 213, Issue 1–3, pp 89–103 | Cite as

Casting light on dark matter

  • John EllisEmail author


The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.


Dark matter LHC Supersymmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bustamante, M., Cieri, L., Ellis, J.: Beyond the standard model for Montaneros. arXiv:0911.4409 [hep-ph]
  2. 2.
    Goldberg, H.: Constraint on the Photino mass from cosmology. Phys. Rev. Lett. 50, 1419 (1983) [Erratum-ibid. 103, 099905 (2009)]ADSCrossRefGoogle Scholar
  3. 3.
    Ellis, J.R., Hagelin, J.S., Nanopoulos, D.V., Olive, K.A., Srednicki, M.: Supersymmetric relics from the big bang. Nucl. Phys. B 238, 453 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    Haber, H.E., Kane, G.L.: The search for supersymmetry: probing physics beyond the standard. Model. Phys. Rept. 117, 75 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    Kane, G.L., Kolda, C.F., Roszkowski, L., Wells, J.D.: Study of constrained minimal supersymmetry. Phys. Rev. D 49, 6173 (1994). arXiv:hep-ph/9312272 ADSCrossRefGoogle Scholar
  6. 6.
    Ellis, J.R., Olive, K.A., Santoso, Y., Spanos, V.C.: Supersymmetric dark matter in light of WMAP. Phys. Lett. B 565, 176 (2003). arXiv:hep-ph/0303043 ADSCrossRefGoogle Scholar
  7. 7.
    Ellis, J., Olive, K.A., Spanos, V.C.: Galactic-Centre Gamma Rays in CMSSM Dark Matter Scenarios. JCAP 1110, 024 (2011). arXiv:1106.0768 [hep-ph]ADSCrossRefGoogle Scholar
  8. 8.
    Joint Supersymmetry Working Group of the ALEPH, DELPHI, L3 and OPAL Experiments.
  9. 9.
    Nakamura, K., et al. (Particle Data Group): Review of particle physics. J. Phys. G 37, 075021 (2010)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Bennett, G.W., et al.: [Muon G-2 Collaboration], final report of the Muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035
  12. 12.
    Komatsu, E., et al. (WMAP Collaboration): Seven-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO]
  13. 13.
    Aad, G., et al. (ATLAS Collaboration): Combined exclusion reach of searches for squarks and gluinos using final states with jets, missing transverse momentum, and zero or one lepton, with the ATLAS detector in sqrt(s)= 7 TeV proton-proton collisions. (2011)
  14. 14.
    Aad, G., et al. (ATLAS Collaboration): Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in sqrts=7TeV proton-proton collisions. (2011)
  15. 15.
    Chatrchyan, S., et al.: [CMS Collaboration], search for new physics at CMS with jets and missing momentum. (2011)
  16. 16.
    Buchmueller, O., et al.: Predictions for supersymmetric particle masses using indirect experimental and cosmological constraints. JHEP 0809, 117 (2008). arXiv:0808.4128 [hep-ph]ADSCrossRefGoogle Scholar
  17. 17.
    Buchmueller, O., et al.: Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1. Eur. Phys. J. C 64, 391 (2009). arXiv:0907.5568 [hep-ph]ADSCrossRefGoogle Scholar
  18. 18.
    Buchmueller, O., et al.: Frequentist analysis of the parameter space of minimal supergravity. Eur. Phys. J. C 71, 1583 (2011). arXiv:1011.6118 [hep-ph]; Eur. Phys. J. C 71, 1634 (2011). arXiv:1102.4585 [hep-ph]
  19. 19.
    Buchmueller, O., et al.: Supersymmetry and Dark Matter in Light of LHC 2010 and Xenon100 Data. Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529 [hep-ph]ADSCrossRefGoogle Scholar
  20. 20.
    Aprile, E., et al. (XENON100 Collaboration): Dark matter results from 100 live days of XENON100 data. Phys. Rev. Lett. 107, 131302 (2011). arXiv:1104.2549 [astro-ph.CO]ADSCrossRefGoogle Scholar
  21. 21.
    Ellis, J.R., Olive, K.A., Savage, C.: Hadronic uncertainties in the elastic scattering of supersymmetric dark matter. Phys. Rev. D 77, 065026 (2008). arXiv:0801.3656 [hep-ph]ADSCrossRefGoogle Scholar
  22. 22.
    Pavan, M.M., Strakovsky, I.I., Workman, R.L., Arndt, R.A.: The Pion nucleon Sigma term is definitely large: results from a G.W.U. analysis of π-nucleon scattering data. PiN Newslett. 16, 110 (2002). arXiv:hep-ph/0111066; Pavan, M.M.: Private communication (2011), taking into account recent data on pionic Deuterium: see Strauch, T., et al. Pionic deuterium. arXiv:1011.2415 [nucl-ex] as interpreted in Baru, V., Hanhart, C., Hoferichter, M., Kubis, B., Nogga, A., Phillips, D.R.: Precision calculation of the π − deuteron scattering length and its impact on threshold π-N scattering. arXiv:1003.4444 [nucl-th]
  23. 23.
    Young, R.D., Thomas, A.W.: Octet baryon masses and sigma terms from an SU(3) chiral extrapolation. Phys. Rev. D 81, 014503 (2010). arXiv:0901.3310 [hep-lat]ADSCrossRefGoogle Scholar
  24. 24.
  25. 25.
    Chatrchyan, S. et al. (CMS Collaboration): Search for neutral MSSM Higgs Bosons decaying to Tau pairs in pp collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 106 231801 (2011). arXiv:1104.1619 [hep-ex]ADSCrossRefGoogle Scholar
  26. 26.
    Aaij, R., et al. (LHCb Collaboration): search for the rare decays \(B_s \to \mu^+ \mu^-\) and \(B_d \to \mu^+ \mu^-\). Phys. Lett. B 699, 330 (2011). arXiv:1103.2465 [hep-ex]ADSCrossRefGoogle Scholar
  27. 27.
    Aaltonen, T., et al. (CDF Collaboration): Search for \(B_s^0 \to \mu^+ \mu^-\) and B 0μ  +  μ − Decays with 2/fb of \(p {\bar p}\) Collisions. Phys. Rev. Lett. 100, 101802 (2008). arXiv:0712.1708 [hep-ex]; see also
  28. 28.
    Abazov, V.M., et al. (D0 Collaboration): search for the rare decay \(B_s^0 \to \mu^+ \mu^-\). Phys. Lett. B 693, 539 (2010). arXiv:1006.3469 [hep-ex]ADSCrossRefGoogle Scholar
  29. 29.
    Ellis, J., Olive, K.A., Savage, C., Spanos, V.C.: Neutrino Fluxes from CMSSM LSP Annihilations in the Sun. Phys. Rev. D 81, 085004 (2010). arXiv:0912.3137 [hep-ph]ADSCrossRefGoogle Scholar
  30. 30.
    Navarro, J.F., Frenk, C.S., White, S.D.M.: A Universal density profile from hierarchical clustering. Astrophys. J. 490, 493 (1997). arXiv:astro-ph/9611107 ADSCrossRefGoogle Scholar
  31. 31.
    Einasto, J.: Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Trudy Inst. Astrofiz. Alma-Ata 51, 87 (1965)ADSGoogle Scholar
  32. 32.
    Einasto, J., Haud, U.: Galactic models with massive corona. Astron. Astrophys. 223, 89 (1989)ADSGoogle Scholar
  33. 33.
    Graham, A.W., Merritt, D., Moore, B., Diemand, J., Terzic, B.: Empirical models for dark matter Halos. I. nonparametric construction of density profiles and comparison with parametric models. Astron. J. 132, 2685 (2006). astro-ph/0509417 ADSCrossRefGoogle Scholar
  34. 34.
    Vitale, V., Morselli, A.: For the Fermi-LAT Collaboration, indirect search for dark matter from the center of the milky way with the fermi-large area telescope. arXiv:0912.3828 [astro-ph.HE]
  35. 35.
    Ackermann, M., et al. (Fermi LAT Collaboration): Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV. Phys. Rev. D 82, 092004 (2010). arXiv:1008.3999 [astro-ph.HE], and references thereinADSCrossRefGoogle Scholar
  36. 36.
    Adriani, O., et al. (PAMELA Collaboration): An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV. Nature 458, 607 (2009). arXiv:0810.4995 [astro-ph]ADSCrossRefGoogle Scholar
  37. 37.
    Adriani, O., et al. (PAMELA Collaboration): PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy. Phys. Rev. Lett. 105, 121101 (2010) arXiv:1007.0821 [astro-ph.HE]ADSCrossRefGoogle Scholar
  38. 38.
    von Doetinchem, Ph., et al.: The General Antiparticle Spectrometer (GAPS)—hunt for dark matter using low-energy antideuterons. arXiv:1012.0273 [astro-ph.IM]
  39. 39.
    AMS Collaboration:

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.TH Division, Physics DepartmentCERNGenevaSwitzerland
  2. 2.Theoretical Particle Physics and Cosmology Group, Physics DepartmentKing’s College LondonLondonUK

Personalised recommendations