Hyperfine Interactions

, Volume 213, Issue 1–3, pp 205–215 | Cite as

Ultra-low energy storage ring at FLAIR

  • Carsten P. Welsch
  • A. I. Papash
  • O. Gorda
  • J. Harasimowicz
  • O. Karamyshev
  • G. Karamysheva
  • D. Newton
  • M. Panniello
  • M. Putignano
  • M. R. F. Siggel-King
  • A. Smirnov
Article

Abstract

The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV and possibly less. The USR has been completely redesigned over the past three years. The ring structure is based on a “split achromat” lattice that allows in-ring experiments with internal gas jet target. Beam parameters might be adjusted in a wide range: from very short pulses in the nanosecond regime to a Coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Detailed investigations of the USR, including studies into the ring’s long term beam dynamics, life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. New tools and beam handling techniques for diagnostics of ultra-low energy ions at beam intensities less than 106 were developed by the QUASAR Group. In this paper, progress on the USR project will be presented with an emphasis on the expected beam parameters available to the experiments at FLAIR.

Keywords

Antimatter Beam dynamics Low energy Storage ring Lattice design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Welsch, C.P., et al.: FLAIR – a facility for low-energy antiproton and ion research at GSI. Hyperfine Interact. 172(1–3), 71–80 (2007)ADSGoogle Scholar
  2. 2.
    Welsch, C.P., et al.: Exploring sub-femtosecond correlated dynamics with an ultra-low energy electrostatic storage ring. AIP Conf. Proc. 796, 266–271 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Welsch, C.P., et al.: An ultra-low-energy storage ring at FLAIR. NIM A 546, 405–417 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Papash, A., Welsch, C.P.: An update of the USR lattice: towards a true multi-user experimental facility. In: Proc. Part. Acc. Conf., Vancouver, Canada (2009)Google Scholar
  5. 5.
    Welsch, C.P., et al.: Ultralow energy storage ring at the facility for antiproton and ion research: lattice design, operating modes, and beam diagnostics. Phys. Rev. ST-AB (2010, submitted)Google Scholar
  6. 6.
    Welsch, C.P.: http://www.quasar-group.org. Accessed 15 Nov 2011
  7. 7.
    Papash, A.I., Welsch, C.P.: On the possibility of realizing shortest bunches in low-energy storage rings. Phys. Part. Nucl. Lett. 6(3), 216–226 (2009)CrossRefGoogle Scholar
  8. 8.
    Schmid, P., et al.: Preliminary design of an extraction scheme for the USR. Hyperfine Interact. 194(1–3), 183–187 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Papash, A.I., Welsch, C.P.: Ultra-short pulse operation mode of the ultra-low energy storage ring. Nucl. Instr. Meth. A 620, 128–141 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Smirnov, A.V., Welsch, C.P.: Cooling rates of the USR as calculated with BETACOOL. AIP Conf. Proc. 821, 397–401 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Orlov, D.A., et al.: Appl. Phys. Lett. 78, 2721–2724 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Orlov, D.A., et al.: Ultra-cold electron beams for the Heidelberg TSR and CSR. AIP Conf. Proc. 821, 489 (2005)Google Scholar
  13. 13.
    Shornikov, A., et al.: Ultra-low energy electron cooler for the Heidelberg CSR. Proc. COOL, Lanzhou, China (2009)Google Scholar
  14. 14.
    Garoby, R., Hancock, S., Vallet, J.-L.: Demonstration of bunch triple splitting in the CERN PS. CERN/PS 2000-038 (RF)Google Scholar
  15. 15.
    Karamisheva, G.A., Papash, A.I., Welsch, C.P.: Study of slow and fast extraction for the ultralow energy storage ring. Phys. Part. Nucl. Lett. 8(1), 50–60 (2011)CrossRefGoogle Scholar
  16. 16.
    Smirnov, A.: http://betacool.jinr.ru. Accessed 15 Nov 2011
  17. 17.
    Hinterberger, F., Prasuhn, D.: Analysis of internal target effects in light ion storage rings. Nucl. Instr. Meth. A 279, 413–422 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    Harasimowicz, J., Welsch, C.P.: Beam instrumentation for the future ultra-low energy storage ring at FLAIR. Hyperfine Interact. 194(1–3), 177–181 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Harasimowicz, J., et al.: Beam diagnostics for the USR. In: Proc. Part. Acc. Conf., Vancouver, Canada (2009)Google Scholar
  20. 20.
    Harasimowicz, J., Welsch, C.P.: Optimisation studies of a resonant capacitive pick-up for beam position monitoring of low intensity, low velocity antiproton beams at FLAIR. In: Proc. DIPAC’09, Basel, Switzerland, pp. 300–302 (2009)Google Scholar
  21. 21.
    Sieber, T., et al.: A beam diagnostics system for the heidelberg cryogenic storage ring CSR. In: Proc. Europ. Part. Acc. Conf., Edinburgh, Scotland (2006)Google Scholar
  22. 22.
    Vogel, M., et al.: Scintillation light produced by low-energy beams of highly-charged ions. Nucl. Instrum. Meth. B 263(2), 518–522 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Kühnel, K.-U., et al.: A novel beam profile monitor based on a supersonic gas jet. In: Proc. Europ. Part. Acc. Conf., Genoa, Italy (2008)Google Scholar
  24. 24.
    Putignano, M., et al.: A fast, low perturbation ionization beam profile monitor based on a gas-jet curtain for the ultra low energy storage ring. Hyperfine Interact. 194(1–3), 189–193 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Honma, T., et al.: Design and performance of a nondestructive beam-profile monitor utilizing charge-division method at HIMAC. Nucl. Instr. Meth. A 490(3), 435–443 (2002)CrossRefGoogle Scholar
  26. 26.
    Hashimoto, Y., et al.: Oxygen gas-sheet beam profile monitor for the synchrotron and storage ring. Nucl. Instr. Meth. A 527(3), 289–300 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Putignano, M., et al.: Design of a Nozzle-Skimmer system for a low perturbation ionization beam profile monitor. In: Proc. DIPAC Workshop, Basel, Switzerland (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Carsten P. Welsch
    • 1
  • A. I. Papash
    • 2
    • 3
  • O. Gorda
    • 2
  • J. Harasimowicz
    • 1
  • O. Karamyshev
    • 2
    • 3
  • G. Karamysheva
    • 2
    • 3
  • D. Newton
    • 1
  • M. Panniello
    • 2
  • M. Putignano
    • 1
  • M. R. F. Siggel-King
    • 1
  • A. Smirnov
    • 2
    • 3
  1. 1.Cockcroft Institute and the University of LiverpoolLiverpoolUK
  2. 2.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  3. 3.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations