Hyperfine Interactions

, Volume 211, Issue 1–3, pp 77–82 | Cite as

Structural and hyperfine properties of Ni-doped SnO2 nanoparticles

  • Fermin H. Aragón
  • Jose Antonio H. Coaquira
  • Renato Cohen
  • Luiz C. C. M. Nagamine
  • Pilar Hidalgo
  • S. L. M. Brito
  • D. Gouvêa
Article

Abstract

In this work, we report on the study of Ni-doped SnO2 nanoparticles prepared by a polymer precursor method. X-ray diffraction (XRD) data analysis evidenced the formation of only the tetragonal rutile-type phase in all samples. Meanwhile, the mean crystallite size shows a progressive reduction with the Ni content, the unit cell volume and residual strain does not show any clear dependence on the Ni content. Room temperature Mössbauer spectra were well modeled by using two doublets which represent the particle core and shell surface regions. Assuming that the isomer shift (IS) of the core region remains constant for all samples, the isomer shift of the shell region shows a linear increase with the Ni content. That increase was assigned to the progressive increase in the s-electronic density produced by either the generation of oxygen vacancies or the formation of Ni complexes at the surface due to the surface segregation of Ni ions as the Ni content is increased. Larger QS values obtained for the doublet of the shell are associated with the stronger distortions in the nearest surrounding of tin atoms produced by the surface segregation of Ni ions.

Keywords

Ni-doped SnO2 nanoparticles Surface segregation effects Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Punnoose, A., Reddy, K.M., Hays, J., Thurber, A.: Appl. Phys. Lett. 89, 112509 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Thurber, A., Reddy, K.M., Punnoose, A.: J. Appl. Phys. 105, 07E706 (2009)CrossRefGoogle Scholar
  3. 3.
    Bahrami, B., Khodadadi, A., Kazemeini, M., Mortazavi Y.: Sens. Actuators B 133, 352 (2008)CrossRefGoogle Scholar
  4. 4.
    Hidalgo, Castro, R.H.R., Coelho, A.C.V., Gouvêa, D.: Chem. Mater. 17, 4149 (2005)CrossRefGoogle Scholar
  5. 5.
    Aragón, F.H., Cohen, R., Coaquira, J.A.H., Barros, G.V., Hidalgo, P., Nagamine, L.C.C.M., Gouvêa, D.: Hyperfine Interact. (2011). doi: 10.1007/s10751-011-0340-6
  6. 6.
    Punnoose, A., Hays, J.: J. Appl. Phys. 97, 10D321 (2005)CrossRefGoogle Scholar
  7. 7.
    Stjerna, B., Granqvist, C.G.: J. Appl. Phys. 68, 6241 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    Aragón, F.H., Coaquira, J.A.H., Hidalgo, P., da Silva, S.W., Brito, S.L.M., Gouvêa, D., Morais, P.C.: J. Raman Spectrosc. 42, 1081 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Aragón, F.H., Coaquira, J.A.H., Candela, D.S., Baggio Saitovitch, E., Hidalgo, P., Gouvêa, D., Morais, P.C.: J. Phys.: Conference Series 217, 012079 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Fermin H. Aragón
    • 1
  • Jose Antonio H. Coaquira
    • 1
  • Renato Cohen
    • 2
  • Luiz C. C. M. Nagamine
    • 2
  • Pilar Hidalgo
    • 3
  • S. L. M. Brito
    • 4
  • D. Gouvêa
    • 4
  1. 1.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.Faculdade Gama- FGAUniversidade de BrasíliaBrasíliaBrazil
  4. 4.Departamento de Metalurgia e Engenharia de Materiais, Escola PolitécnicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations