Hyperfine Interactions

, Volume 208, Issue 1–3, pp 43–48 | Cite as

DyNi2Mn—magnetisation and Mössbauer spectroscopy

  • Jian Li Wang
  • Stewart James CampbellEmail author
  • Shane Joseph Kennedy
  • Shi Xue Dou
  • Guang Heng Wu


The physical properties of DyNi2Mn doped with 57Fe have been investigated by X-ray diffraction, magnetisation (10–300 K) and 57Fe Mössbauer spectroscopy measurements (5–300 K). DyNi2Mn(57Fe) crystallizes in the MgCu2-type cubic structure (Fd−3m space group). The ordering temperature is found to be TC = 99(2) K, much higher than those of DyNi2 (∼22 K) and DyMn2 (∼35 K). Analyses of isothermal M–H curves and the related Arrott plots confirm that the magnetic phase transition at TC is second order. The magnetic entropy change around TC is 4.0 J/kg K for a magnetic field change of 0 T to 5 T. The spectra above TC exhibit features consistent with quadrupolar effects while below TC the spectra exhibit magnetic hyperfine splitting. The Debye temperature for DyNi2Mn has been determined as θD = 200(20) K from a fit to the variable temperature isomer shift IS(T).


Phase transition Mössbauer spectroscopy Magnetic entropy change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, J.L., Tang, C.C., Wu, G.H., Liu, Q.L., Tang, N., Wang, W.Q., Wang, W.H., Yang, F.M., Liang, J.K., de Boer, F.R., Buschow, K.H.J.: Solid State Commun. 121, 615 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Wang, J.L., Marquina, C., Ibarra, M.R., Wu, G.H.: Phys. Rev. B 73, 94436 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Jackson, D.D., McCall, S.K., Weir, S.T., Karki, A.B., Young, D.P., Qiu, W., Vohra, Y.K.: Phys. Rev. B 75, 224422 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Wang, J.L., Campbell, S.J., Kennedy, S.J., Zeng, R., Dou, S.X., Wu, G.H.: J. Phys.: Condens. Matter. 23, 206002 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Mushnikov, N.V., Gaviko, V.S., Park, J., Pirogov, A.N.: Phys. Rev. B 79, 184419 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Wang, J.L., Campbell, S.J., Zeng, R., Dou, S.X., Kennedy, S.J.: J. Appl. Phys. 109, 07E304 (2011)CrossRefGoogle Scholar
  7. 7.
    Padmanabhan, B., Bhat, H.L., Elizabeth, S., Rößler, S., Rößler, U.K., Dörr, K., Müller, K.H.: Phys. Rev. B 75, 024419 (2007) and references thereinADSCrossRefGoogle Scholar
  8. 8.
    Kaul, S.N.: J. Magn. Magn. Mater. 53, 5 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    Marzec, J., Przewoźnik, J., Żukrowski, J., Krop, K.: J. Magn. Magn. Mater. 157/158, 413 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Stoch, P., Pszczoła, J., Dąbrowski, L., Suwalski, J., Pańta, A.: J. Alloys Compd. 337, 33 (2002)CrossRefGoogle Scholar
  11. 11.
    Oddou, J.L., Jeandey, C., Ballou, R., Deportes, J., Ouladdiaf, B.: Solid State Commum. 85, 419 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Long, G.J., Hautot, D., Grandjean, F., Morelli, D.T., Meisner, G.P.: Phys. Rev. B 60, 7410 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, J.L., Campbell, S.J., Tegus, O., Marquina, C., Ibarra, M.R., Phys. Rev. B 75, 174423 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jian Li Wang
    • 1
    • 2
    • 3
  • Stewart James Campbell
    • 1
    Email author
  • Shane Joseph Kennedy
    • 2
  • Shi Xue Dou
    • 3
  • Guang Heng Wu
    • 4
  1. 1.School of Physical, Environmental and Mathematical SciencesThe University of New South WalesCanberraAustralia
  2. 2.Bragg InstituteANSTOLucas HeightsAustralia
  3. 3.Institute for Superconductivity and Electronic MaterialsUniversity of WollongongWollongongAustralia
  4. 4.Institute of PhysicsChinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations