Hyperfine Interactions

, Volume 202, Issue 1–3, pp 97–106 | Cite as

Effect of titanium ion substitution in the barium hexaferrite studied by Mössbauer spectroscopy and X-ray diffraction

  • Pamela Quiroz
  • Bernd Halbedel
  • Angel Bustamante
  • Juan C. González
Article

Abstract

A series of M-type barium hexaferrite has been synthesized in a glass melt by partially substituting the Fe2O3 with TiO2 for investigation of their structure. The glass melt has the basic composition (mol%): 40 BaO + 33 B2O3 + (27-x) Fe2O3 + x TiO2 with x = 0, 3.6, 5.4 and 7.2 mol% TiO2. The substituted ferrites were studied by means of X-ray diffraction, Mössbauer spectroscopy and vibration sample magnetometer. X-ray diffraction studies revealed that not all samples have a single ferritic phase, a small second phase corresponding to BaTi6O13 was also observed to form. The Mössbauer spectra changed from magnetically ordered (x = 0) to magnetically ordered with strong line broadening. Moreover, the broadening increases with TiO2 content. The Mössbauer parameters suggested that Ti4 +  occupies the 2a and 12k crystal sites, and the Ti4 +  substitution on the 2b and 4f2 site also occurs at high melt dopings. Therefore, coercivity and saturation magnetization decreased.

Keywords

Barium hexaferrite Mössbauer spectroscopy Substitution X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruan, S.-P., Xu, B.-K., Suo, H., Wu, F.-Q., Xiang, S.-Q.: J. Magn. Magn. Mater. 212, 175–177 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Halbedel, B., Hülsenberg, D., Belau, St., Schadewald, U.: cfi/Ber. DKG 82(13), 182–188 (2005)Google Scholar
  3. 3.
    Rohde & Schwarz, News 199/09, pp. 70–72 (2009)Google Scholar
  4. 4.
    Mariño-Castellanos, P.A., Anglada-Rivera, J., Cruz-Fuentes, A., Lora-Serrano, R.: J. Magn. Magn. Mater. 280, 214–220 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Brabers, V.A.M., Stevens, A.A.E., Dalderop, J.H.J., Simga, Z.: J. Magn. Magn. Mater. 196/197, 312–314 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Quiroz, P., Halbedel, B.: In: CD Proceedings 54th International Scientific Colloquium, TU Ilmenau, isle Verlag Ilmenau, paper_id_048 (2009)Google Scholar
  7. 7.
    Schadewald, U., Halbedel, B., Romanus, H., Hülsenberg, D.: Mat.-wiss. u. Werkstofftechnik 37(11), 941–944 (2006)CrossRefGoogle Scholar
  8. 8.
    Young, R.A.: The Rietveld Method. Oxford University Press, Oxford (1993)Google Scholar
  9. 9.
    Townes, W.D., Fang, J.H., Perrota, A.J.: Zeitschrift für Kristallographie 125, 437–449 (1967)CrossRefGoogle Scholar
  10. 10.
    Albanese, G., Watts, B.E., Leccabue, F., Diaz Castañon, S.: J. Magn. Magn. Mater. 184, 337–343 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Rösler, S., Wartewig, P., Langbein, H.: Cryst. Res. Technol. 38(11), 927–934 (2003)CrossRefGoogle Scholar
  12. 12.
    Morish, A.H., Zhou, X.Z., Yang, Z., Zeng, H.H.-X.: Hyperfine Interact. 90, 365 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Zhou, X.Z., Morish, A.H., Yang, Z., Zeng, H.H.-X.: J. Appl. Phys. 75, 5556 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Lanje, N.Y., Kulkarni, D.K., Rewatkar, K.G.: Mater. Lett. 47, 125 (2001)CrossRefGoogle Scholar
  15. 15.
    Pereda, J.A., Isalgué, A., Tejada, J., Litterst, F.J., Obradors, X.: Hyperfine Interact. 28, 569 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    Meaz, T.M., Bender Koch, C.: Hyperfine Interact. 156/157, 341–346 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Meaz, T.M., Bender Koch, C.: Hyperfine Interact. 166, 455–463 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Obradors, X., Collomb, A., Pernet, M., Joubert, J.C., Isalgué, A.: J. Magn. Magn. Mater. 44, 118–128 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pamela Quiroz
    • 1
  • Bernd Halbedel
    • 1
  • Angel Bustamante
    • 2
  • Juan C. González
    • 3
  1. 1.Department of Inorganic-Nonmetallic Materials, Institute of Materials EngineeringIlmenau University of TechnologyIlmenauGermany
  2. 2.Laboratory of Ceramics and Nanomaterials, Faculty of Physical SciencesSan Marcos National UniversityLimaPeru
  3. 3.Surfaces Research Group-Interfaces and Thin FilmsMaterials Science Institute of Sevilla - CSICSevillaSpain

Personalised recommendations