Advertisement

Hyperfine Interactions

, Volume 202, Issue 1–3, pp 107–115 | Cite as

Smooth driving of Mössbauer electromechanical transducers

  • A. VeigaEmail author
  • M. A. Mayosky
  • N. Martínez
  • P. Mendoza Zélis
  • G. A. Pasquevich
  • F. H. Sánchez
Article

Abstract

Quality of Mössbauer spectra is strongly related to the performance of source velocity modulator. Traditional electromechanical driving techniques demand hard-edged square or triangular velocity waveforms that introduce long settling times and demand careful driver tuning. For this work, the behavior of commercial velocity transducers and drive units was studied under different working conditions. Different velocity reference waveforms in constant-acceleration, constant-velocity and programmable-velocity techniques were tested. Significant improvement in spectrometer efficiency and accuracy was achieved by replacing triangular and square hard edges with continuous smooth-shaped transitions. A criterion for best waveform selection and synchronization is presented and attainable enhancements are evaluated. In order to fully exploit this driving technique, a compact microprocessor-based architecture is proposed and a suitable data acquisition system implementation is presented. System linearity and efficiency characterization are also shown.

Keywords

Mössbauer Instrumentation Spectrometer Transducers Constant-velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cranshaw, T.E.: Mössbauer spectroscopy. J. Phys. E: Sci. Instrum. 7, 497–507 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    Kankeleit, E.: Velocity spectrometer for Mössbauer experiments. Rev. Sci. Instrum. 35, 194–197 (1964)ADSCrossRefGoogle Scholar
  3. 3.
    Gaitanis, N., Kostikas, A., Simopoulos, A.: A constant acceleration Mössbauer spectrometer with velocity range selectivity. Nucl. Instrum. Methods 75, 274–276 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    Lipkin, J., Schechter, B., Shtrikman, S., Treves, D.: Inexpensive automatic recording Mössbauer spectrometer. Rev. Sci. Instrum. 35, 1336–1339 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    Sarma, P.R., Sharma, A.K., Tripathi, K.C.: A constant velocity Mössbauer spectrometer free of long-term instrumental and radioactive decay drifts in the count rate. Nucl. Instrum. Methods 164, 591–593 (1979)ADSCrossRefGoogle Scholar
  6. 6.
    Rubin, D.: Constant acceleration transducer employing negative feedback for use in Mössbauer experiments. Rev. Sci. Instrum. 33, 1358–1360 (1962)ADSCrossRefGoogle Scholar
  7. 7.
    Seberini, M.: A constant velocity Mössbauer drive. J. Phys. E: Sci. Instrum. 21, 641–647 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    Veiga, A., Martínez, N., Mayosky, M., Spinelli, E., Mendoza Zélis, P., Pasquevich, G.A., Sánchez, F.H.: A constant-velocity Mössbauer spectrometer with controlled temperature swep. Rev. Sci. Instrum. 73, 3579–3583 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Veiga, A., Martínez, N., Mendoza Zélis, P., Pasquevich, G.A., Sánchez, F.H.: Advances in constant-velocity Mössbauer instrumentation. Hyperfine Interact. 167, 905–909 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Papoulis, A.: The Fourier Integral and its Applications. McGraw-Hill, New York (1962)zbMATHGoogle Scholar
  11. 11.
    Mendoza Zélis, P., Pasquevich, G.A., Sánchez, F.H., Veiga, A., Martínez, N.: A new application of Mössbauer effect thermal scans: determination of the magnetic hyperfine field temperature dependence. Phys. Lett. A 298, 55–59 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Pasquevich, G.A., Mendoza Zélis, P., Fernández van Raap, M.B., Sánchez, F.H.: Hyperfine field temperature dependence of Fe3Si from Mössbauer thermal scans. Physica B 354, 369–372 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Saccone, F.D., Rodríguez Torres, C.E., Pasquevich, G.A., Fernández van Raap, M.B., Sánchez, F.H.: Crystallisation kinetics of B-rich mischmetal-Fe-B nanocomposite ribbons. Physica B 354, 237–240 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Pasquevich, G.A., Mendoza Zélis, P., Sánchez, F.H., Fernández van Raap, M.B., Veiga, A., Martínez, N.: Determination of the iron magnetic moments dynamics in the nanocrystalline ribbons Fe90Zr7B3 by Mössbauer magnetic scans. Physica B: Condensed Matter. 384, 348–350 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Veiga, A., Pasquevich, G.A., Mendoza Zélis, P., Sánchez, F.H., Fernández van Raap, M.B., Martínez, N.: Experimental design and methodology for a new Mössbauer scan experiment: absorption line tracking. Hyperfine Interact. 188, 137–142 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Mendoza Zélis, P., Pasquevich, G.A., Veiga, A., Fernández van Raap, M.B., Sánchez, F.H.: A quasi-continuous observation of the α-transition of Fe1+xS by Mössbauer line tracking. Hyperfine Interact. 195, 161–165 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Mendoza Zélis, P., Pasquevich, G.A., Sánchez, F.H., Veiga, A., Ceolin, M., Cabrera, A.F., Coronado-Miralles, E., Monrabal-Capilla, M., Galan-Mascaros, J.R.: Mössbauer thermal scan study of a spin crossover system. J. Phys.: Conf. Series 217, 012017 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Pasquevich, G.A., Veiga, A., Mendoza Zélis, P., Sánchez, F.H.: Optimal configuration for programmable Mössbauer experiments. J. Phys.: Conf. Series 217, 012139 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. Veiga
    • 1
    • 2
    Email author
  • M. A. Mayosky
    • 1
    • 3
  • N. Martínez
    • 2
    • 3
    • 4
  • P. Mendoza Zélis
    • 2
    • 4
  • G. A. Pasquevich
    • 2
    • 4
  • F. H. Sánchez
    • 2
    • 4
  1. 1.Facultad de IngenieríaUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Instituto de Física La Plata, CONICETLa PlataArgentina
  3. 3.Comisión de Investigaciones Científicas de la Provincia de Buenos AiresLa PlataArgentina
  4. 4.Facultad de Cs. ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations