Hyperfine Interactions

, Volume 199, Issue 1–3, pp 311–319 | Cite as

Electrostatic ultra-low-energy antiproton recycling ring

  • M. R. F. Siggel-King
  • A. Papash
  • H. Knudsen
  • M. Holzscheiter
  • C. P. Welsch


There is a strong need to push forward developments in the storage and control of ultra-low-energy antiproton beams to enable important scientific research. To this end, a small electrostatic ring, and associated electrostatic acceleration section, is being designed and developed by the QUASAR group. The ring will be placed on the MUSASHI beamline at the CERN-AD. It will serve as a prototype for the future ultra-low energy storage ring (USR), to be integrated at the facility for low-energy antiproton and ion research (FLAIR) and will enable various components of the USR to be tested and optimised. A reaction microscope will be integrated in the ring to enable partial ionisation cross section measurements to be made. This small recycler ring will be unique due to its combination of size, electrostatic nature and energy and type of circulating particles (ca 3–30 keV antiprotons). A short electrostatic accelerating section is also being developed, which will be placed between the beamline and the ring to accelerate the antiprotons from the trap extraction energy (typically 250 eV) to the final required (re-circulating) energy. The AD recycler project will be described, including ring design, accelerating injection section and the inclusion of a reaction microscope and the experiments it will enable.


Electrostatic ring AD recycler project Beamline Reaction microscope Antiproton Accelerating Injection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baird, S., et al.: The antiproton decelerator: AD. Proc. Part. Acc. Conf. (1997)Google Scholar
  2. 2.
    Welsch, C.P., et al.: Hyperfine Interact. 172, 71 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Welsch, C.P., et al.: Nucl. Instrum. Methods A 546, 405 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Knudsen, H.: J. Phys: Conf Ser. 194, 012040 (2009). 072001 L. H. AndersenADSCrossRefGoogle Scholar
  5. 5.
    Dörner, R., et al.: Nuclr. Instrum. Methods Phys. Res. B, 124, 225 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Torii, H.A., et al.: AIP Conf. Proc. 793, 293 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Knudsen, H., et al.: Phys. Rev. Lett. 101, 043201 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Harasimowicz, J.: Hyperfine Interact. 194, 177 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Putignano, M.: Hyperfine Interact. 194, 189 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Hvelplund, P., et al.: J. Phys. B 27, 925 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    Andersen, L.H., et al.: Phys. Rev. A 41, 6536 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Igarashi, A., et al.: Nucl. Instrum. Methods Phys. Res., Sect. B 214, 135 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Keim, M., et al.: Phys. Rev. A 67, 062711 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Schultz, D.R., et al.: Phys. Rev. A 67, 022712 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Kirchner, T., et al.: J. Phys. B. 35, 925 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Lee, T.G., et al.: Phys. Rev. A. 61, 062713 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Bent, G., et al.: J. Chem. Phys. 108, 1459 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    McGovern, M., et al.: Phys. Rev. A. 81, 032708 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. R. F. Siggel-King
    • 1
    • 2
  • A. Papash
    • 3
    • 4
    • 5
  • H. Knudsen
    • 6
  • M. Holzscheiter
    • 4
  • C. P. Welsch
    • 1
    • 2
  1. 1.Cockcroft InstituteDaresburyUK
  2. 2.Department of PhysicsUniversity of LiverpoolLiverpoolUK
  3. 3.Helmholtz Centre for Heavy Ion Research GSIDarmstadtGermany
  4. 4.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  5. 5.JINRDubnaRussia
  6. 6.Department of Physics and AstronomyUniversity of AarhusAarhusDenmark

Personalised recommendations