Hyperfine Interactions

, Volume 199, Issue 1–3, pp 167–173 | Cite as

Precision mass measurements of neutron halo nuclei using the TITAN Penning trap

  • M. Brodeur
  • T. Brunner
  • S. Ettenauer
  • A. T. Gallant
  • V. V. Simon
  • M. Smith
  • A. Lapierre
  • E. Mané
  • R. Ringle
  • V. L. Ryjkov
  • S. Bacca
  • P. Delheij
  • D. Lunney
  • M. Pearson
  • J. Dilling
Article

Abstract

Precise atomic mass determinations play a key role in various fields of physics, including nuclear physics, testing of fundamental symmetries and constants and atomic physics. Recently, the TITAN Penning trap measured the masses of several neutron halos. These exotic systems have an extended, diluted, matter distribution that can be modelled by considering a nuclear core surrounded by a halo formed by one or more of loosely bound neutrons. Combined with laser spectroscopy measurements of isotopic shifts precise masses can be used to obtain reliable charge radii and two-neutron-seperation energies for these halo nuclei. It is shown that these results can be used as stringent tests of nuclear models and potentials providing an important metric for our understanding of the interactions in all nuclei.

Keywords

Halo nuclei Penning trap Mass measurement Nuclear theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacca, S., et al.: Eur. Phys. J. A 42, 553 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Mueller, P., et al.: Phys. Rev. Lett. 99, 252501 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Hansen, P.G., Jonson, B.: Europhys. Lett. 4(4), 409 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Wang, L.B., et al.: Phys. Rev. Lett. 93, 142501 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Sánchez, R., et al.: Phys. Rev. Lett. 96, 033002 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Nörtershäuser, W., et al.: Phys. Rev. Lett. 102, 062503 (2009)CrossRefGoogle Scholar
  7. 7.
    Otten, W.E.: Nuclear Radii and Moments of Unstable Isotopes. Plenum Press, New York (1987)Google Scholar
  8. 8.
    Drake, G.W.F.: Nucl. Phys. A 737, 25 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Dilling, J., et al.: Int. J. Mass Spectrom. 251, 198 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Ryjkov, V., et al.: Phys. Rev. Lett. 101, 012501 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Smith, M., et al.: Phys. Rev. Lett. 101, 202501 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Ringle, R., et al.: Phys. Lett. B 675, 170 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Dombsky, M., et al.: Rev. Sci. Instrum. 71, 978 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Smith, M., et al.: Hyperfine Interact. 173, 171 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Froese, M., et al.: Hyperfine Interact. 173, 85 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Gräff, G., et al.: Z. Phys. A 297, 35 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    Bollen, G., et al.: J. Appl. Phys. 68, 4355 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    König, M., et al.: Int. J. Mass Spectrom. Ion. Process. 142, 95 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    Bollen, G., et al.: Nucl. Phys. A 693, 3 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Brodeur, M., et al.: Phys. Rev. C 80, 044318 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Audi, G., et al.: Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Bachelet, C., et al.: Phys. Rev. Lett. 100, 182501 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Pieper, S.C.: Proceeding of Enrico Fermi School (2007). arXiv:0711.1500
  24. 24.
    Navrátil, P., et al.: J. Phys. G: Nucl. Part. Phys. 36, 083101 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Pieper, S.C.: Nucl. Phys. A 751, 516c (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Hagen, G., et al.: Phys. Lett. B 656, 169 (2007)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Maris, P., Vary, J.P., Shirokov, A.M.: Phys. Rev. C 79, 014308 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Pieper, S.C., Wiringa, R.B., Carlson, J.: Phys. Rev. C 70, 054325 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Pieper, S.C., et al.: Phys. Rev. C 64, 014001 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Jurgenson, E.D., Navrátil, P., Furnstahl, R.J.: Phys. Rev. Lett. 103, 082501 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Wiringa, R.B., Stoks, V.G.J., Schiavilla, R.: Phys. Rev. C 51, 38 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    Caurier, E., Navrátil, P.: Phys. Rev. C 73, 021302(R) (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Machleidt, R.: Phys. Rev. C 63, 024001 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    Doleschall, P., et al.: Phys. Rev. C 67, 064005 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Forssén, C., Caurier, E., Navrátil, P.: Phys. Rev. C 79, 021303(R) (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Varga, K., Suzuki, Y., Lovas, R.G.: Phys. Rev. C 66, 041302 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Thompson, D.R., LeMere, M., Tang, Y.C.: Nucl. Phys. A 286, 53 (1970)ADSCrossRefGoogle Scholar
  38. 38.
    Torabi, B.R.: Structure of Beryllium Isotopes in Fermionic Molecular Dynamics. Ph.D. thesis, Technischen Universität Darmstadt (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Brodeur
    • 1
    • 2
  • T. Brunner
    • 1
    • 3
  • S. Ettenauer
    • 1
    • 2
  • A. T. Gallant
    • 1
    • 2
  • V. V. Simon
    • 1
    • 4
  • M. Smith
    • 1
    • 2
  • A. Lapierre
    • 5
  • E. Mané
    • 1
  • R. Ringle
    • 5
  • V. L. Ryjkov
    • 1
  • S. Bacca
    • 1
  • P. Delheij
    • 1
  • D. Lunney
    • 6
  • M. Pearson
    • 1
  • J. Dilling
    • 1
    • 2
  1. 1.TRIUMFVancouverCanada
  2. 2.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  3. 3.Physik Department E12Technische Universität MünchenGarchingGermany
  4. 4.Max-Planck-Institut für KernphysikHeidelbergGermany
  5. 5.TRIUMFBCCanada
  6. 6.CSNSM-IN2P3-CNRSUniversité Paris 11Orsay CampusFrance

Personalised recommendations