Hyperfine Interactions

, Volume 199, Issue 1–3, pp 151–159 | Cite as

Cooling of short-lived, radioactive, highly charged ions with the TITAN cooler Penning trap

Status and perspectives
  • V. V. SimonEmail author
  • P. Delheij
  • J. Dilling
  • Z. Ke
  • W. Shi
  • G. Gwinner


TITAN is an on-line facility dedicated to precision experiments with short-lived radioactive isotopes, in particular mass measurements. The achievable resolution on mass measurement, which depends on the excitation time, is limited by the half life of the radioactive ion. One way to bypass this is by increasing the charge state of the ion of interest. TITAN has the unique capability of charge-breeding radioactive ions using an electron-beam ion trap (EBIT) in combination with Penning trap mass spectrometry. However, the breeding process leads to an increase in energy spread, ΔE, which in turn negatively influences the mass uncertainty. We report on the development of a cooler Penning trap which aims at reducing the energy spread of the highly charged ions prior to injection into the precision mass measurement trap. Electron and proton cooling will be tested as possible routes. Mass selective cooling techniques are also envisioned.


Ion cooler trap Electron cooling Proton cooling Highly charged ions Mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Schury, P., et al.: Precision mass measurements of rare isotopes near N = Z = 33 produced by fast beam fragmentation. Phys. Rev. C 75, 055801 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Savard, G., et al.: Q value of the superallowed decay of 46V and its influence on Vud and the unitarity of the Cabibbo–Kobayashi–Maskawa matrix. Phys. Rev. Lett. 95, 102501 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Dilling, J., et al.: Mass measurements on highly charged radioactive ions, a new approach to high precision with TITAN. Int. J. Mass Spectrom. 251, 198 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Dilling, J., et al.: The proposed TITAN facility at ISAC for very precise mass measurements on highly charged short-lived isotopes. Nucl. Instrum. Methods B 204, 492–496 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Smith, M., et al.: First Penning-trap mass measurement of the exotic halo nucleus 11Li. Phys. Rev. Lett. 101, 202501 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Ryjkov, V.L., et al.: Direct mass measurement of the four-neutron halo nuclide 8He. Phys. Rev. Lett. 101, 012501 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Ringle, R., et al.: High-precision Penning trap mass measurements of 9,10Be and the one-neutron halo nuclide 11Be. Phys. Lett. B 675, 170 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Brodeur, M., et al.: New mass measurement of 6Li and ppb-level systematic studies of the Penning trap mass spectrometer TITAN. Phys. Rev. C 80, 044318 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Bollen, G., et al.: Mass measurements of short-lived nuclides with ion traps. Nucl. Phys. A 693, 3 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Marrs, R.E.: Self-cooling of highly charged ions during extraction from electron beam ion sources and traps. Nucl. Instrum. Methods B 149, 182 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Oshima, N., et al.: Project to produce cold highly charged ions using positron and electron cooling techniques. J. Phys. Conf. Ser. 2, 127 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Hall, D.S., et al.: Electron cooling of protons in a nested Penning trap. Phys. Rev. Lett. 77, 1962 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    Ryjkov, V.L., et al.: TITAN project status report and a proposal for a new cooling method of highly charged ions. Eur. Phys. J. A 25, 53 (2005)CrossRefGoogle Scholar
  15. 15.
    Bollen, G., et al.: ISOLTRAP: A tandem Penning trap system for accurate on-line mass determination of short-lived isotopes. Nucl. Instrum. Methods A 368, 675 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    Rolston, S.L., et al.: Cooling antiprotons in an ion trap. Hyperfine Interact. 44, 233 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    Ke, Z., et al.: A cooler ion trap for the TITAN on-line trapping facility at TRIUMF. Hyperfine Interact. 173, 103 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Ke, Z.: A cooler ion trap for the TITAN on-line trapping facility at TRIUMF. PhD thesis, Univ. of Manitoba, Canada (2008)Google Scholar
  19. 19.
    Zwicknagel, G., et al.: Electron cooling of highly charged ions in Penning traps. AIP Conf. Proc. 862, 281 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Kluge, H.-J., et al.: HITRAP: a facility at GSI for highly-charged ions. Adv. Quantum Chem. (Academic Press) 53, 83 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Herfurth, F., et al.: The HITRAP project at GSI: trapping and cooling of highly-charged ions in a Penning trap. In: Proceedings of the 4th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2006), Parksville, Canada, 3–8 September, 2006, PART II/III (2006)Google Scholar
  22. 22.
    Mohamed, T.: Successful production of non-neutral electron plasma of high density in the multi-ring trap. Plasma Dev. Oper. 16, 181 (2008)CrossRefGoogle Scholar
  23. 23.
    Schlachter, A.S.: Charge-changing-collisions. In: Proc. of the 10th Int. Cyclotron Conf., 563 (1984)Google Scholar
  24. 24.
    Benvenuti, C., et al.: Vacuum properties of TiZrV non-evaporable getter films. Vacuum 60, 57 (2001)CrossRefGoogle Scholar
  25. 25.
    Fei, X., et al.: Cylindrical Penning traps with dynamical orthogonalized anharmonicity compensation for precission experiments. Nucl. Instrum. Methods A 425, 431 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Maero, G.: Cooling of highly charged ions in a Penning trap for HITRAP. PhD thesis, University of Heidelberg, Germany (2008)Google Scholar
  27. 27.
    Ringle, R., et al.: A “Lorentz” steerer for ion injection into a Penning trap. Int. J. Mass Spectrom. 263, 38 (2007)Google Scholar
  28. 28.
    Testera, G., et al.: The role of the patch effect electric fields in the Penning trap method of measuring the gravitational force on antiprotons. Hyperfine Interact. 109, 333 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • V. V. Simon
    • 1
    • 2
    • 3
    Email author
  • P. Delheij
    • 1
  • J. Dilling
    • 1
    • 5
  • Z. Ke
    • 4
  • W. Shi
    • 4
  • G. Gwinner
    • 4
  1. 1.TRIUMFVancouverCanada
  2. 2.Max-Planck-Institut für KernphysikHeidelbergGermany
  3. 3.Ruprecht-Karls-UniversitätHeidelbergGermany
  4. 4.University of ManitobaWinnipegCanada
  5. 5.University of British ColumbiaVancouverCanada

Personalised recommendations