Hyperfine Interactions

, Volume 198, Issue 1–3, pp 15–22

Mössbauer study of 57Fe in GaAs and GaP following 57Mn+ implantation

  • H. Masenda
  • D. Naidoo
  • K. Bharuth-Ram
  • H. P. Gunnlaugsson
  • G. Weyer
  • W. B. Dlamini
  • R. Mantovan
  • R. Sielemann
  • M. Fanciulli
  • T. E. Mølholt
  • S. Ólafsson
  • G. Langouche
  • K. Johnston
  • the ISOLDE Collaboration
Article

DOI: 10.1007/s10751-010-0215-2

Cite this article as:
Masenda, H., Naidoo, D., Bharuth-Ram, K. et al. Hyperfine Interact (2010) 198: 15. doi:10.1007/s10751-010-0215-2

Abstract

Ion implantation provides a precise method of incorporating dopant atoms in semiconductors, provided lattice damage due to the implantation process can be annealed and the dopant atoms located on regular lattice sites. We have undertaken 57Fe emission Mössbauer spectroscopy measurements on GaAs and GaP single crystals following implantation of radioactive 57Mn +  ions, to study the lattice sites of the implanted ions, the annealing of implantation induced damage and impurity–vacancy complexes formed. The Mössbauer spectra were analyzed with four spectral components: an asymmetric doublet (D1) attributed to Fe atoms in distorted environments due to implantation damage, two single lines, S1 assigned to Fe on substitutional Ga sites, and S2 to Fe on interstitial sites, and a low intensity symmetric doublet (D2) assigned to impurity–vacancy complexes. The variations in the extracted hyperfine parameters of D1 for both materials at high temperatures (T > 400 K) suggests changes in the immediate environment of the Fe impurity atoms and different bonding mechanism to the Mössbauer probe atom. The results show that the annealing of the radiation induced damage is more prominent in GaAs compared to GaP.

Keywords

Emission Mössbauer spectroscopy 57Fe 57Mn GaAs GaP 

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • H. Masenda
    • 1
  • D. Naidoo
    • 1
    • 2
  • K. Bharuth-Ram
    • 3
  • H. P. Gunnlaugsson
    • 4
  • G. Weyer
    • 4
  • W. B. Dlamini
    • 3
  • R. Mantovan
    • 5
  • R. Sielemann
    • 6
  • M. Fanciulli
    • 5
    • 7
  • T. E. Mølholt
    • 8
  • S. Ólafsson
    • 8
  • G. Langouche
    • 9
  • K. Johnston
    • 10
  • the ISOLDE Collaboration
    • 10
  1. 1.School of PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.DST/NRF Centre of Excellence in Strong MaterialsUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.School of PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  4. 4.Department of Physics and AstronomyAarhus UniversityÅrhus CDenmark
  5. 5.Laboratorio MDM CNR-IMMAgrate Brianza (MB)Italy
  6. 6.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany
  7. 7.Dipartimento di Scienza dei MaterialiUniversità di Milano BicoccaMilanoItaly
  8. 8.Science InstituteUniversity of IcelandReykjavikIceland
  9. 9.Instituut voor Kern- en StralingsfysicaUniversity of LeuvenLeuvenBelgium
  10. 10.EP DivisionCERNGeneva 23Switzerland

Personalised recommendations