Advertisement

Hyperfine Interactions

, Volume 197, Issue 1–3, pp 43–52 | Cite as

Magnetism in iron implanted oxides: a status report

  • H. P. Gunnlaugsson
  • R. Sielemann
  • T. E. Mølholt
  • W. B. Dlamini
  • K. Johnston
  • R. Mantovan
  • H. Masenda
  • D. Naidoo
  • W. N. Sibanda
  • K. Bharuth-Ram
  • M. Fanciulli
  • H. P. Gíslason
  • G. Langouche
  • S. Ólafsson
  • G. Weyer
  • the ISOLDE collaboration
Article

Abstract

Emission Mössbauer spectroscopy on 57Fe fed by 57Mn ions implanted in the metal oxides ZnO, MgO and Al2O3 has been performed. The implanted ions occupy different lattice sites and charge states. A magnetic part of the spectra in each oxide can be assigned to Fe3 +  ions in a paramagnetic state with unusually long relaxation time observable to temperatures up to several hundreds Kelvin. Earlier expectations that the magnetic spectra could correspond to an ordered magnetic state could not be confirmed. A clear decision for paramagnetism and against an ordered magnetic state was achieved by applying a strong magnetic field of 0.6 Tesla. The relaxation times deduced were compared to spin–lattice relaxation times from electron paramagnetic resonance (EPR).

Keywords

Magnetism Iron implanted oxides Magnetic ion Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Das Sarma, S.: Am. Sci. 89, 516 (2001)ADSGoogle Scholar
  2. 2.
    Dietl, T., et al.: Science 287, 1019 (2000)CrossRefADSGoogle Scholar
  3. 3.
    Zunger, A., et al.: Physics 3, 53 (2010)CrossRefGoogle Scholar
  4. 4.
    Fedoseyev, V.N., et al.: Nucl. Instrum. Methods B126, 88 (1997)CrossRefGoogle Scholar
  5. 5.
    Goldanskii, V.I., Herber, R.H. (eds.): Chemical Applications of Mössbauer Spectroscopy. Academic Press, New York (1968)Google Scholar
  6. 6.
    Weyer, G., et al.: J. Appl. Phys. 102, 113915 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Gunnlaugsson, H.P., et al.: Appl. Phys. Lett. 97, 142501 (2010)CrossRefADSGoogle Scholar
  8. 8.
    Rita, E., et al.: Appl. Phys. Lett. 85, 4899 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Mølholt, T.E., et al.: Hyperfine. Interact. (2010, accepted)Google Scholar
  10. 10.
    Blume, M., Tijon, J.A.: Phys. Rev. 165, 446 (1968)CrossRefADSGoogle Scholar
  11. 11.
    Tribollet, J., Behrends, J., Lips, K.: Europhys. Lett. 84, 20009 (2008)CrossRefADSGoogle Scholar
  12. 12.
    Azamat, D.V., Fanciulli, M.: Physica. B 401–402, 382 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Leider, H.R., Pipkorn, D.N.: Phys. Rev. 165, 494 (1968)CrossRefADSGoogle Scholar
  14. 14.
    Gunnlaugsson, H.P., et al.: Hyperfine. Interact. (2010). doi: 10.1007/s10751-010-0184-5 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • H. P. Gunnlaugsson
    • 1
  • R. Sielemann
    • 2
  • T. E. Mølholt
    • 3
  • W. B. Dlamini
    • 4
  • K. Johnston
    • 5
  • R. Mantovan
    • 6
  • H. Masenda
    • 7
  • D. Naidoo
    • 7
  • W. N. Sibanda
    • 7
  • K. Bharuth-Ram
    • 4
  • M. Fanciulli
    • 6
  • H. P. Gíslason
    • 3
  • G. Langouche
    • 8
  • S. Ólafsson
    • 3
  • G. Weyer
    • 1
  • the ISOLDE collaboration
  1. 1.Department of Physics and AstronomyAarhus UniversityÅrhus CDenmark
  2. 2.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany
  3. 3.Science InstituteUniversity of IcelandReykjavíkIceland
  4. 4.School of PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  5. 5.PH DepartmentISOLDE/CERNGeneva 23Switzerland
  6. 6.Laboratorio MDMIMM-CNRAgrate Brianza (MB)Italy
  7. 7.School of PhysicsUniversity of the WitwatersrandWITSSouth Africa
  8. 8.Instituut voor Kern-en StralingsfysicaUniversity of LeuvenLeuvenBelgium

Personalised recommendations