Hyperfine Interactions

, Volume 198, Issue 1–3, pp 5–13 | Cite as

Mössbauer spectroscopy of 57Fe in α-Al2O3 following implantation of 57Mn*

  • H. P. Gunnlaugsson
  • R. Mantovan
  • T. E. Mølholt
  • D. Naidoo
  • K. Johnston
  • H. Masenda
  • K. Bharuth-Ram
  • G. Langouche
  • S. Ólafsson
  • R. Sielemann
  • G. Weyer
  • Y. Kobayashi
  • the ISOLDE collaboration
Article

Abstract

The valence state and annealing reactions of Mn/Fe in single crystalline α-Al2O3 have been determined following low fluence (<1012 cm − 2) 60 keV implantations of 57Mn +  (T1/2 = 1.5 min) and emission Mössbauer spectroscopy on the 57m Fe daughter nuclei in the temperature range from 110–700 K. At 110 K, most probe atoms are found in the Fe2 +  state in amorphous surroundings due to the implantation damage. A fraction of the Fe is found in cubic environment, possibly nano-precipitates of η-Al2O3. This site is found to disappear from the spectra above 500 K. Annealing of the damage sites at increasing temperatures leads first to increased incorporation of the probe atoms as Fe3 +  on Al sites, and, above room temperature, also as Fe4 + . The Fe3 +  sub-spectrum is masked by slow paramagnetic relaxations following a T2 dependence, as expected for a two-phonon Raman process. Our data is consistent with data from 57Co and 57Fe implantations, suggesting a general increase in the average Fe valence state with lower implantation dose and negligible annealing reactions at room temperature.

Keywords

Emission Mössbauer spectroscopy Al2O3 57Fe 57Mn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wertheim, G.K., Remeika, J.P.: Mössbauer effect hyperfine structure of trivalent Fe57 in corundum. Phys. Lett. 10, 14–15 (1964)CrossRefADSGoogle Scholar
  2. 2.
    Wickman, H.H., Wertheim, G.K.: Mössbauer hyperfine spectra of Fe3 +  in corundum: magnetic-and crystal-field effects. Phys. Rev. B 148, 211–217 (1966)CrossRefADSGoogle Scholar
  3. 3.
    Hess, J., Levy, A.: Response of the Mössbauer spectrum of paramagnetic Fe3 +  in Al2O3 to nuclear dipole fields. Phys. Rev. B 22, 5068–5078 (1980)CrossRefADSGoogle Scholar
  4. 4.
    Donnet, C., Jaffrezic, H., Marest, G., Moncoffre, N., Tousset, J.: Iron-implantation sintered alumina studied by RBS, CEMS and SEM techniques. Nucl. Instrum. Methods B 50, 410–415 (1990)CrossRefADSGoogle Scholar
  5. 5.
    McHargue, C.J., Sklad, P.S., McCallum, J.C., White, C.W., Ferez, A., Marest, G.: The structure of Al2O3 implanted with iron at 77 K. Nucl. Instrum. Methods B 46, 144–148 (1990)CrossRefADSGoogle Scholar
  6. 6.
    Guomei, W., Shipu, L., Ning, X., Donghui, F.: Structure and surface properties of polycrystalline 57Fe implanted aluminas. Nucl. Instrum. Methods B 72, 64–68 (1992)CrossRefGoogle Scholar
  7. 7.
    Kobayashi, T., Nakanishi, A., Fukumura, K., Langouche, G.: Fine iron particles formed in a sapphire crystal by the ion implantation technique. J. Appl. Phys. 83, 4631–4641 (1998)CrossRefADSGoogle Scholar
  8. 8.
    McHargue, C.J., Farlow, G.C., Sklad, P.S., White, C.W., Perez, A., Kornilios, N., Marest, G.: Iron ion implantation effects in sapphire. Nucl. Instrum. Methods B 19/20, 813–821 (1987)CrossRefGoogle Scholar
  9. 9.
    Dézsi, I., Szũcs, I., Fetzer, Cs., Pattyn, H., Langouche, G., Pfannes, H.D., Magalhães-Paniago, R.: Local interactions of 57Fe after electron capture of 57Co implanted in α-Al2O3 and in α-Fe2O3. J. Phys., Condens. Matter 12, 2291–2296 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Fedoseyev, V.N., Bätzner, K., Catherall, R., Evensen, A.H.M., Forkel-Wirth, D., Jonsson, O.C., Kugler, E., Lettry, J., Mishin, V.I., Ravn, H.L., Weyer, G., the ISOLDE Collaboration: Chemically selective laser ion source of manganese. Nucl. Instrum. Methods B 126, 88–91 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Mølholt, T.E., Mantovan, R., Gunnlaugsson, H.P., Bharuth-Ram, K., Fanciulli, M., Gíslason, H.P., Johnston, K., Kobayashi, Y., Langouche, G., Masenda, H., Naidoo, D., Ólafsson, S., Sielemann, R., Weyer, G.: Temperature and dose dependence of defect complex formation with ion-implanted Mn/Fe in ZnO. Physica B 404, 4820–4822 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Gunnlaugsson, H.P., Fanciulli, M., Dietrich, M., Baruth-Ram, K., Sielemann, R., Weyer, G., the ISOLDE collaboration: 57Fe Mössbauer study of radiation damage in ion implanted Si, SiGe and SiSn. Nucl. Instum. Methods B. 168, 55–60 (2002)CrossRefADSGoogle Scholar
  13. 13.
    Weyer, G., Gunnlaugsson, H.P., Dietrich, M., Fanciulli, M., Baruth-Ram, K., Sielemann, R., the ISOLDE collaboration: Creation and annealing of defect structures in silicon-based semiconductors during and after implantation at 77–500 K. Nucl. Instrum. Methods B 206, 90–94 (2003)CrossRefADSGoogle Scholar
  14. 14.
    Weyer, G., Gunnlaugsson, H.P., Dietrich, M., Fynbo, H., Bharuth-Ram, K., the ISOLDE Collaboration: Mössbauer spectroscopy on Fe impurities in diamond. Eur. Phys. J. Appl. Phys. 27, 317–320 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Gunnlaugsson, H.P., Bharuth-Ram, K., Dietrich, M., Fanciulli, M., Fynbo, H.O.U., Weyer, G.: Identification of substitutional and interstitial Fe in 6H-SiC. Hyp. Int. 169, 1318–1323 (2006)ADSGoogle Scholar
  16. 16.
    Weyer, G., Gunnlaugsson, H.P., Mantovan, R., Naidoo, D., Bharuth-Ram, K., Fanciulli, M., Agne, T.: Defect-related local magnetism at dilute Fe atoms in ion-implanted ZnO. J. Appl. Phys. 102, 113915 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Gunnlaugsson, H.P., Mølholt, T.E., Mantovan, R., Masenda, H., Naidoo, D., Dlamini, W.B., Sielemann, R., Bharuth-Ram, K., Weyer, G., Johnston, K., Langouche, G., Ólafsson, S., Gíslason, H.P., Kobayashi, Y., Yoshida, Y., Fanciulli, M., the ISOLDE Collaboration: Paramagnetism in Mn/Fe implanted ZnO. Appl. Phys. Lett. 97, 142501 (2010)CrossRefADSGoogle Scholar
  18. 18.
    Mølholt, T.E., Mantovan, R., Gunnlaugsson, H.P., Bharuth-Ram, K., Fanciulli, M., Johnston, K., Kobayashi, Y., Langouche, G., Masenda, H., Naidoo, D., Ólafsson, S., Sielemann, R., Weyer, G., Gíslason, H.P.: Mössbauer study of spin-lattice relaxations of dilute Fe3 +  in MgO. Hyp. Int. (2010, this conference)Google Scholar
  19. 19.
    Kankeleit, E.: The effect of decaying atomic states on integral and time differential Mössbauer spectra. Zeit. Physik. A. 275, 119–121 (1975)CrossRefADSGoogle Scholar
  20. 20.
    Gerard, A., Lerho, M.: Fe1 +  and charge transfer in ZnS. Analysis of source experiments results. Hyp. Int. 29, 1373–1376 (1986)CrossRefADSGoogle Scholar
  21. 21.
    de Resende, V.G., Cordier, A., De Grave, E., Laurent, C., Eeckhout, S.G., Giuli, G., Peigney, A.M., da Costa, G., Vandenberghe, R.E.: Presence of metallic Fe nanoclusters in α-(Al,Fe)2O3 solid solutions. J. Phys. Chem. C. 112, 16256–16263 (2008)CrossRefGoogle Scholar
  22. 22.
    Perez, A., Marest, G., Sawicka, B.D., Sawicki, J.A., Tyliszczak, T.: Iron-ion-implantation effects in MgO crystals. Phys. Rev. B. 28, 1227–1238 (1983)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • H. P. Gunnlaugsson
    • 1
  • R. Mantovan
    • 2
  • T. E. Mølholt
    • 3
  • D. Naidoo
    • 4
  • K. Johnston
    • 5
  • H. Masenda
    • 4
  • K. Bharuth-Ram
    • 6
  • G. Langouche
    • 7
  • S. Ólafsson
    • 3
  • R. Sielemann
    • 8
  • G. Weyer
    • 1
  • Y. Kobayashi
    • 9
  • the ISOLDE collaboration
    • 5
  1. 1.Department of Physics and AstronomyAarhus UniversityÅrhus CDenmark
  2. 2.Laboratorio MDM, IMM-CNRAgrate BrianzaItaly
  3. 3.Science InstituteUniversity of IcelandReykjavíkIceland
  4. 4.School of PhysicsUniversity of the WitwatersrandWITSSouth Africa
  5. 5.PH Dept, ISOLDE/CERNGeneva 23Switzerland
  6. 6.School of PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa
  7. 7.Instituut voor Kern- en StralingsfysicaUniversity of LeuvenLeuvenBelgium
  8. 8.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany
  9. 9.The Institute of Physical and Chemical Research (RIKEN)SaitamaJapan

Personalised recommendations