Hyperfine Interactions

, Volume 196, Issue 1–3, pp 129–141 | Cite as

The ISOLDE RILIS pump laser upgrade and the LARIS Laboratory

  • B. A. Marsh
  • L.-E. Berg
  • D. V. Fedorov
  • V. N. Fedosseev
  • O. J. Launila
  • M. Lindroos
  • R. Losito
  • F. K. Österdahl
  • T. Pauchard
  • I. T. Pohjalainen
  • U. Sassenberg
  • M. D. Seliverstov
  • A. M. Sjödin
  • G. Tranströmer
Article

Abstract

On account of its high efficiency, speed and unmatched selectivity, the Resonance Ionization Laser Ion Source (RILIS) is the preferred method for ionizing the nuclear reaction products at the ISOLDE on-line isotope separator facility. By exploiting the unique electronic energy level ‘fingerprint’ of a chosen element, the RILIS process of laser step-wise resonance ionization enables an ion beam of high chemical purity to be sent through the mass selective separator magnet. The isobaric purity of a beam of a chosen isotope is therefore greatly increased. The RILIS, comprising of up to three frequency tunable pulsed dye lasers has been upgraded with the installation of a Nd:YAG pump laser as a replacement for the old Copper Vapor Laser (CVL) system. A summary of the current Nd:YAG pumped RILIS performance is given. To accompany the RILIS pump laser upgrade, a new ionization scheme for manganese has been developed at the newly constructed LAser Resonance Ionization Spectroscopy (LARIS) laboratory and successfully applied for on-line RILIS operation. An overview of the LARIS facility is given along with details of the ionization scheme development work for manganese.

Keywords

ISOLDE ISOL Laser ion source Manganese 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mishin, V., Fedoseyev, V., Kluge, H.-J., Letokhov, V., Ravn, H., Scheerer, V., Shirakabe, Y., Sundell, S, Tengblad, O.: Nucl. Instrum. Methods Phys. Res., B 73, 550 (1993)CrossRefADSGoogle Scholar
  2. 2.
    Fedoseyev, V., Huber, G., Köster, U., Lettry, J., Mishin, V., Ravn, H., Sebastian, V.: Hyperfine Interact. 127, 409 (2000)CrossRefADSGoogle Scholar
  3. 3.
    Lindroos, M., Butler, P., Huyse, M., Riisager, K.: Nucl. Instrum. Methods Phys. Res., B 266(19–20), 4687 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Fedosseev, V., Berg, L., Lebas, N., Launila, O., Lindroos, M., Losito, R., Marsh, B., Osterdahl, F., Pauchard, T., Transtromer, G.: Nucl. Instrum. Methods Phys. Res., B 266(19–20), 4378 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Du, K., Wu, N., Xu, J., Giesekus, J., Loosen, P., Poprawe, R.: Opt. Lett. 23(5), 370 (1998)CrossRefADSGoogle Scholar
  6. 6.
    Marsh, B.A., Fedosseev, V.N., Kosuri, P.: Hyperfine Interact. 171, 109 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Smalley, R.E.: Laser Chem. 2(3–4), 167 (1983)CrossRefGoogle Scholar
  8. 8.
    Doverstal, M., Lindgren, B., Sassenberg, U., Yu, H.: Phys. Scr. 43, 572 (1991)CrossRefADSGoogle Scholar
  9. 9.
    Gangrsky, Yu. P., Zemlyanoi, S.G., Izosimov, I.N., Markov, B.N., Tam, T.K.: Instrum. Exp. Tech. 33, 168 (1990)Google Scholar
  10. 10.
    Batzner, K., Fedoseyev, V.N., Catherall, R., Evensen, A.H.M., Forkel-Wirth, D., Jonsson, O.C., Kugler, E., Lettry, J., Mishin, V.I., Ravn, H.L., Weyer, G.: Nucl. Instrum. Methods Phys. Res., B 126(1–4), 88 (1997)Google Scholar
  11. 11.
    Kurucz, R.: Transactions of the International Astronomical Union, vol. XXB, pp. 168–172 (edited by M. McNally). Kluwer, Dordrecht (1988)Google Scholar
  12. 12.
    Ralchenko, Y., Kramida, A.E., Reader, J., and NIST ASD Team: NIST Atomic Spectra Database 3.1.5 (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • B. A. Marsh
    • 1
  • L.-E. Berg
    • 2
  • D. V. Fedorov
    • 3
  • V. N. Fedosseev
    • 1
  • O. J. Launila
    • 2
  • M. Lindroos
    • 1
  • R. Losito
    • 1
  • F. K. Österdahl
    • 2
  • T. Pauchard
    • 2
  • I. T. Pohjalainen
    • 4
  • U. Sassenberg
    • 5
  • M. D. Seliverstov
    • 3
  • A. M. Sjödin
    • 1
    • 2
  • G. Tranströmer
    • 2
  1. 1.CERNGenevaSwitzerland
  2. 2.KTH-Royal Institute of TechnologyStockholmSweden
  3. 3.Petersburg Nuclear Physics InstituteGatchinaRussia
  4. 4.Accelerator LaboratoryUniversity of JyväskyläJyväskyläFinland
  5. 5.FysikumStockholm UniversityStockholmSweden

Personalised recommendations