Hyperfine Interactions

, Volume 189, Issue 1–3, pp 167–173 | Cite as

Solid-state synthesis of α-Fe and iron carbide nanoparticles by thermal treatment of amorphous Fe2O3

  • O. Schneeweiss
  • R. Zbořil
  • B. David
  • M. Heřmánek
  • M. Mashlan
Article

Abstract

Thermal treatment of amorphous iron(III) oxide nanopowder (2–3 nm) in various atmospheres is presented as a simple route towards α-Fe and iron carbides nanoparticles. The chemical composition and size of nanoparticles can be controlled using the reaction temperature, annealing time and atmosphere (hydrogen, carbon monoxide, hydrocarbons). To monitor the structure, phase composition, size, morphology and magnetic properties of nanoparticles, XRD, Mössbauer spectroscopy, and magnetic measurements were carried out. The measurements of temperature dependence of magnetic moment yield information on the critical temperatures of magnetic and phase transformations. Application of hydrogen atmosphere results in the formation of α-Fe, while iron carbides (∼Fe3C) can be obtained in atmospheres of carbon monoxide or hydrocarbons.

Keywords

Iron oxides Solid-state synthesis Nanocrystalline powder Iron Iron carbides Mössbauer spectroscopy X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batude-Thibierge, M.: Technological marketing for early nanotechnologies. In: Fecht, H.-J., Werner, M. (eds.) The Nano–Micro Interface, pp. 11–33. Wiley, Weinheim (2004)Google Scholar
  2. 2.
    Ennas, G., Marongiu, G., Musinu, A., Falqui, A., Ballviano, P., Caminiti, R.: Characterization of nanocrystalline gamma-Fe2O3 prepared by wet chemical method. J. Mater. Res. 14, 1570–1575 (1999)CrossRefADSGoogle Scholar
  3. 3.
    Depeyrot, J., Sousa, E.C., Aquino, R., Tourinho, F.A., Dubois, E., Bacri, J.-C., Perzynski, R.: Rare earth doped maghemite EDL-MF: a perspective for nanoradiotherapy? J. Magn. Magn. Mater. 252, 375–377 (2000)CrossRefADSGoogle Scholar
  4. 4.
    McMichael, R.D., Schull, R.D., Swartzendruber, L.J., Bennett, L.H., Watson, R.E.: Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater. 111, 29–33 (1992)CrossRefADSGoogle Scholar
  5. 5.
    Zboril, R., Mashlan, M., Petridis, D.: Iron(III) oxides from thermal processes—synthesis, structural and magnetic properties, Mossbauer spectroscopy characterization, and applications. Chem. Mater. 14, 969–982 (2002)CrossRefGoogle Scholar
  6. 6.
    Hermanek, M., Zboril, R., Mashlan, M., Machala, L., Schneewiess, O.: Thermal behaviour of iron(II) oxalatedihydrate in the atmosphere of its conversion gases. J. Mater. Chem. 16, 1273–1280 (2006)CrossRefGoogle Scholar
  7. 7.
    Brabers, V.A.M.: Progres in spinel ferrite research. In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, vol. 8, pp. 189–324. Elsevier, Amsterdam (1995)Google Scholar
  8. 8.
    Wijn, H.P.J.: Magnetic Properties of Metals. Springer, Berlin (1991)Google Scholar
  9. 9.
    Bowen, L.H., De Grave, E., Vandenberghe, R.E.: Mössbauer effect studies of magnetic soils and sediments. In: Long, G.J., Grandjean, F. (eds.) Mössbauer Spectroscopy Applied to Magnetism and Materials Science, pp. 115–160. Plenum, New York (1993)Google Scholar
  10. 10.
    Ron, M.: Iron–carbon and iron–nitrogen systems. In: Cohen, R.L. (ed.) Applications of Mössbauer Spectroscopy, vol. 2, pp. 329–382. Academic, New York (1980)Google Scholar
  11. 11.
    Bauer-Grosse, E., Le Caër, G.: Crystallization of amorphous Fe1 − xCx alloys (0.30 ≤ x ≤ 0.32) and chemical twinning. J. Phys. F. Met. Phys. 16, 399–406 (1986)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • O. Schneeweiss
    • 1
  • R. Zbořil
    • 2
  • B. David
    • 1
  • M. Heřmánek
    • 2
  • M. Mashlan
    • 2
  1. 1.Institute of Physics of Materials AS CRBrnoCzech Republic
  2. 2.Centre for Nanomaterial ResearchPalacky UniversityOlomoucCzech Republic

Personalised recommendations