Hyperfine Interactions

, Volume 196, Issue 1–3, pp 177–189 | Cite as

Towards sympathetic cooling of trapped ions with laser-cooled Mg +  ions for mass spectrometry and laser spectroscopy

  • Radu Cazan
  • Christopher Geppert
  • Wilfried Nörtershäuser
  • Rodolfo Sánchez
Article

Abstract

Sympathetic cooling by laser cooled Mg ions has been proposed as a method for fast cooling of highly charged ions to a very low temperature. The paper describes the construction of the solid state laser system at 279.63 nm required for laser cooling of the Mg ions. The laser system is composed of a fiber laser at 1,118.54 nm and two successive second harmonic generation (SHG) ring cavities for frequency quadrupling. In the first SHG cavity, non-critical phase matching of a lithium triborate (LBO) crystal is used for doubling from 1,118.54 to 559.27 nm. The second SHG cavity uses critical phase matching of a β-barium borate (BBO) crystal for doubling from 559.27 to 279.63 nm. With the aid of Boyd–Kleinmann theory, optimum experimental parameters are calculated and used for an efficient SHG. Besides this, the paper intends to be a shortcut for practical applications of the Boyd–Kleinmann theory for SHG.

Keywords

SHG LBO NCPM BBO Mg cooling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Itano, W.M., Berquist, J.C., Bollinger, J.J., Wineland, D.J.: Phys. Scr. T59, 106–120 (1995)CrossRefADSGoogle Scholar
  2. 2.
    Blaum, K.: Phys. Rep. 425, 1–78 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Bussmann, M., Schramm, U., Habs, D., Kolhinen, V.S., Szerypo, J.: Int. J. Mass Spectrom. 251, 179–189 (2006)CrossRefADSGoogle Scholar
  4. 4.
    Beier, T.: Phys. Rep. 339, 79–213 (2000)CrossRefADSGoogle Scholar
  5. 5.
    Winters, D.F.A., Abdulla, A.M., Castrejon Pita, J.R., de Lange, A., Segal, D.M., Thompson, R.C.: Nucl. Instrum. Methods Phys. Res B 235, 201–205 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Klaft, I., Borneis, S., Engel, T., Fricke, B., Grieser, R., Huber, G., Kühl, T., Marx, D., Neumann, R., Schröder, S., Seelig, P., Völker, L.: Phys. Rev. Lett. 73, 2425–2427 (1994)CrossRefADSGoogle Scholar
  7. 7.
    Shabaev, V.M., Artemyev, A.N., Yerokhin, V.A., Zherebtsov, O.M., Soff, G.: Phys. Rev. Lett. 86, 3959–3962 (2001)CrossRefADSGoogle Scholar
  8. 8.
    Vogel, M., Winters, D.F.A., Segal, D.M., Thompson, R.C.: Rev. Sci. Instrum. 76, 103102 (2005)CrossRefADSGoogle Scholar
  9. 9.
    Andjelkovic, Z., Bharadia, S., Sommer, B., Vogel, M., Nörtershäuser, W.: Towards high precision in-trap laser spectroscopy of highly charged ions. Hyperfine Interact. doi:10.1007/s10751-009-0155-x (2010)Google Scholar
  10. 10.
    Kluge, H.-J., Beier, T., Nlaum, K., Dahl, L., Eliseev, S., Herfurth, F., Hofmann, B., Kester, O., Koszudowski, S., Kozhuharov, C., Maero, G., Nörtershäuser, W., Pfister, J., Quint, W., Ratzinger, U., Schempp, A., Schuch, R., Stöhlker, Th., Thompson, R.C., Vogel, M., Vorobjev, G., Winters, D.F.A., Werth, G.: Adv. Quantum Chem. 53, 83–98 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Hänsch, T.W., Schawlowa, A.L.: Opt. Commun. 13, 68–69 (1975)CrossRefADSGoogle Scholar
  12. 12.
    Phillips, W.D., Lett, P.D., Rolston, S.L., Tanner, C.E., Watts, R.N., Westbrook, C.I., Salomon, C., Dalibard, J., Clairon, A., Guellati, S.: Phys. Scr. T34, 20–22 (1991)CrossRefADSGoogle Scholar
  13. 13.
    Drullinger, R.E., Wineland, D.J., Bergquist, J.C.: Appl. Phys. 22, 365–368 (1980)CrossRefADSGoogle Scholar
  14. 14.
    Canning, J: Opt. Lasers Eng. 44, 647–676 (2006)CrossRefGoogle Scholar
  15. 15.
    Mimoun, E., de Sarlo, L., Zondy, J.-J., Dalibard, J., Gerbier, F.: Opt. Express 16, 18684–18691 (2008)CrossRefADSGoogle Scholar
  16. 16.
    Boyd, G.D., Kleinman, D.A.: J. Appl. Phys. 39, 3597–3639 (1968)CrossRefADSGoogle Scholar
  17. 17.
    Friedenauer, A., Markert, F., Schmitz, H.,Petersen, L., Kahra, S., Herrmann, M., Udem, T., Hänsch, T.W., Schätz, T.: Appl. Phys., B 84, 371–373 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Herskind, P., Lindballe, J., Clausen, C., Srensen, J.L., Drewsen, M.: Opt. Lett. 32, 268–270 (2007)CrossRefADSGoogle Scholar
  19. 19.
    Brieger, M., Büsener, H., Hese, A., v.Moers, F., Renn, A.: Opt. Commun. 38, 423–426 (1981)CrossRefADSGoogle Scholar
  20. 20.
    Freeregarde, T., Zimmermann, C.: Opt. Commun. 199, 435–446 (2001)CrossRefADSGoogle Scholar
  21. 21.
    Hänsch, T.W., Couillaud, B.: Opt. Commun. 35, 441–443 (1980)CrossRefADSGoogle Scholar
  22. 22.
    Nielsen, J.S.: Opt. Lett. 20, 840–842 (1995)CrossRefADSGoogle Scholar
  23. 23.
    Kondo, K., Oka, M., Wada, H., Fukui, T., Umezu, N., Tatsuki, K., Kubota S.: Opt. Lett. 23, 195–197 (1998)CrossRefADSGoogle Scholar
  24. 24.
    Bhawalkar, J.D., Mao, Y., Po, H., Goyal, A.K., Gavrilovic, P., Conturie, Y., Singh, S.: Opt. Lett. 24, 823–825 (1999)CrossRefADSGoogle Scholar
  25. 25.
    Madsen, D.N., Yu, P., Balslev S., Thomsen J.W.: Appl. Phys. B 75, 835–839 (2002)CrossRefADSGoogle Scholar
  26. 26.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Radu Cazan
    • 1
  • Christopher Geppert
    • 1
  • Wilfried Nörtershäuser
    • 1
  • Rodolfo Sánchez
    • 2
  1. 1.Institut für KernchemieJohannes Gutenberg UniversitätMainzGermany
  2. 2.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany

Personalised recommendations