Advertisement

Hyperfine Interactions

, Volume 196, Issue 1–3, pp 199–203 | Cite as

ISOLTRAP results 2006–2009

  • Magdalena KowalskaEmail author
  • for the ISOLTRAP collaboration
Open Access
Article

Abstract

Since 2006 the ISOLTRAP mass spectrometer has provided high-precision masses of many short-lived nuclides located all across the nuclear chart with half-lives down to a few 10 ms. These nuclides range from the two-proton halo candidate 17Ne, via the neutron-rich magic 80Zn and 132Sn, up to 229Rn which was identified for the first time. The results show that ISOLTRAP is a versatile tool well suited to address physics topics such as nuclear structure, stellar nucleosynthesis, or the weak interaction.

Keywords

Atomic masses Penning trap mass spectrometry Magic numbers Nucleosynthesis CVC hypothesis and CKM unitarity 

References

  1. 1.
    Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006)CrossRefADSGoogle Scholar
  2. 2.
    Mukherjee, M., et al.: ISOLTRAP: an on-line Penning trap for mass spectrometry on short-lived nuclides. Eur. Phys. J. A 35, 1 (2008)CrossRefADSGoogle Scholar
  3. 3.
    Geithner, W., et al.: Masses and charge radii of 17 − 22Ne and the two-photon-halo candidate 17Ne. Phys. Rev. Lett. 101, 252502 (2008)CrossRefADSGoogle Scholar
  4. 4.
    Yazidjian, C., et al.: Evidence for a breakdown of the isobaric multiplet mass equation: a study of the A = 35, T = 3/2 isospin quartet. Phys. Rev. C 76, 024308 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Guenaut, C., et al.: High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N = 40. Phys. Rev. C 75, 044303 (2006)CrossRefGoogle Scholar
  6. 6.
    Baruah, S., et al.: Mass measurements beyond the major r-process waiting point 80Zn. Phys. Rev. Lett. 101, 262501 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Delahaye, P., et al.: High-accuracy mass measurements of neutron-rich Kr isotopes. Phys. Rev. C 74, 034331 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Jolie, J.: Symmetry principles and nuclear structure. Phys. Rev., C Nucl. Phys. 59, 337 (2007)ADSGoogle Scholar
  9. 9.
    Dworschak, M., et al.: Restoration of the N = 82 Shell Gap from Direct Mass Measurements of 132,134Sn. Phys. Rev. Lett. 100, 072501 (2008)CrossRefADSGoogle Scholar
  10. 10.
    Rodriguez, D., et al.: Accurate mass measurements on neutron-deficient krypton isotopes. Nucl. Phys., A 769, 1 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Breitenfeldt, M., et al.: Penning trap measurements on 99 − 100Cd with ISOLTRAP mass spectrometer, and implications for the rp process. Phys. Rev. C 80, 035805 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Herlert, A., et al.: Towards high-accuracy mass spectrometry of highly charged short-lived ions at ISOLTRAP. Int. J. Mass Spectrom. 251, 131 (2007)Google Scholar
  13. 13.
    Neidherr, D., et al.: High-precision Penning-trap mass measurements of heavy xenon isotopes for nuclear structure studies. Phys. Rev. C 80, 044323 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Neidherr, D., et al.: Discovery of 229Rn and the structure of the heaviest Rn and Ra isotopes from Penning trap mass measurements. Phys. Rev. Lett. 102, 112502 (2009)CrossRefADSGoogle Scholar
  15. 15.
    Kellerbauer, A., et al.: ISOLTRAP Mass Measurements for Weak-Interaction Studies. AIP Conf. Proc. 831, 49 (2006)CrossRefADSGoogle Scholar
  16. 16.
    Mukherjee, M., et al.: The mass of 22Mg. Phys. Rev. Lett. 93, 150801 (2004)CrossRefADSGoogle Scholar
  17. 17.
    Mukherjee, M., et al.: Mass measurements and evaluation around A = 22. Eur. Phys. J. A 35, 31 (2008)CrossRefADSGoogle Scholar
  18. 18.
    Kretzschmar, M.: The Ramsey method in high-precision mass spectrometry with Penning traps: Theoretical foundations Int. J. Mass Spectrom. 264, 122 (2007)CrossRefADSGoogle Scholar
  19. 19.
    George, S., et al.: The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results. Int. J. Mass Spectrom. 264, 110 (2007)CrossRefADSGoogle Scholar
  20. 20.
    George, S., et al.: Time-separated oscillatory fields for high-precision mass measurements on short-lived Al und Ca nuclides. Europhys. Lett. 82, 50005 (2008)CrossRefADSGoogle Scholar
  21. 21.
    George, S., et al.: Ramsey method of separated oscillatory fields for high-precision Penning trap mass spectrometry. Phys. Rev. Lett. 98, 162501 (2007)CrossRefADSGoogle Scholar
  22. 22.
    Kellerbauer, A., et al.: High-precision masses of neutron-deficient rubidium isotopes using a Penning trap mass spectrometer. Phys. Rev. C 76, 045504 (2007)CrossRefADSGoogle Scholar
  23. 23.
    Weber, Ch., et al.: Atomic mass measurements of short-lived nuclides around the doubly-magic 208Pb. Nucl. Phys., A 803, 1 (2008)CrossRefADSGoogle Scholar
  24. 24.
    Kowalska, M., et al.: Preparing a journey to the east of 208Pb with ISOLTRAP. Isobaric purification at A = 209 and new masses for 211 − 213Fr and 211Ra. Eur. Phys. J. A 35, 1 (2009)Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Magdalena Kowalska
    • 1
    Email author
  • for the ISOLTRAP collaboration
  1. 1.CERN, PH-Dept.Geneva 23Switzerland

Personalised recommendations