Hyperfine Interactions

, 193:297 | Cite as

Measuring the antihydrogen fall

  • G. Bonomi
  • AEḡIS proto-collaboration


The AEḡIS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy (Drobychev et al., 2007)), aims at directly measuring the gravitational acceleration g on a beam of cold antihydrogen (\(\overline{\rm H}\)). After production, the \(\overline{\rm H}\) atoms will be driven to fly horizontally with a velocity of a few 100 m/s for a path length of about 1 meter. The small deflection, few tens of μm, will be measured using two material gratings coupled to a position-sensitive detector working as a Moiré deflectometer similarly to what has been done with atoms (Oberthaler et al., Phys Rev A 54:3165, 1996). Details about the detection of the \(\overline{\rm H}\) annihilation point at the end of the flight path with a position-sensitive microstrip detector and a silicon tracker system will be discussed.


Antihydrogen Gravity Moiré deflectometer 


  1. 1.
    Drobychev, G., et al.: CERN-SPSC-2007-017. (2007)
  2. 2.
    Oberthaler, M.K., et al.: Phys. Rev. A 54, 3165 (1996)CrossRefADSGoogle Scholar
  3. 3.
    Tasson, J.D.: Gravitational physics with antimatter. In: These ProceedingsGoogle Scholar
  4. 4.
    Murphy, T.J., Surko, C.M.: Phys. Rev. A 46, 5696 (1992)CrossRefADSGoogle Scholar
  5. 5.
    Gabrielse, G., et al.: Phys. Lett. B 548, 140 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Jorgensen, L.V., et al.: Phys. Rev. Lett. 95, 025002 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Holzscheiter, M.H., Charlton, M.: Rep. Prog. Phys. 62, 1–60 (1999)CrossRefADSGoogle Scholar
  8. 8.
    Gabrielse, G., Rolston, S., Haarsma, L., Kells, W.: Phys. Lett. A 129, 38 (1988)CrossRefADSGoogle Scholar
  9. 9.
    Storry, C., et al.: Phys. Rev. Lett. 93, 263401 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Charlton, M.: Phys. Lett. A 143, 143 (1990)CrossRefADSGoogle Scholar
  11. 11.
    Gidley, D.W., et al.: Annu. Rev. Mater. Res. 36, 49 (2006)CrossRefGoogle Scholar
  12. 12.
    Giammarchi, M.G.: Efficient Rydberg positronium laser excitation for antihydrogen production in a magnetic field. In: These ProceedingsGoogle Scholar
  13. 13.
    Vliegen, E., Merkt, F.: J. Phys. B 39, L241 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Vliegen, E., et al.: Phys. Rev. A 76, 023405 (2007)CrossRefADSGoogle Scholar
  15. 15.
    Testera, G., et al.: In: Proceeding of Cold Antimatter Plasmas and Application to Fundamental Physics Conference, AIP Conference Proceedings, vol. 1037, p. 5 (2008)Google Scholar
  16. 16.
    Bendiscioli, G., Kharzeev, D.: Riv. Nuovo Cim. 17(N. 6), 1–142 (1994)CrossRefGoogle Scholar
  17. 17.
    McGaughey, P.L., et al.: Nucl. Instrum. Meth. A 249, 361 (1986)CrossRefADSGoogle Scholar
  18. 18.
    Straulino, S., et al.: Nucl. Instrum. Meth. A 556, 100 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Meccanica e IndustrialeUniversity of BresciaBresciaItaly
  2. 2.INFN Sezione di PaviaPaviaItaly

Personalised recommendations