Advertisement

Hyperfine Interactions

, Volume 188, Issue 1–3, pp 113–120 | Cite as

Simultaneous fitting of Mars Mössbauer data

  • David G. Agresti
  • Perry A. Gerakines
Article

Abstract

Mössbauer spectra acquired by the Mars Exploration Rovers (MERs) often have low statistics with overlapped component spectra, making it difficult to fit individual spectra for all hyperfine or other parameters. When a set of spectra is complementary in the sense that components are weak in one and strong in another, analyzing the spectra simultaneously (simfitting them) while equating or relating parameters among the spectra will reduce parameter correlations and can lead to convergence of otherwise unfittable spectra. We apply an author-written Windows-based Mössbauer data fitting program to three cases from the MER data set to demonstrate the capabilities and advantages of the simfit method.

Keywords

Mössbauer Data analysis Mars MER Simultaneous fitting Simfit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klingelhöfer, G., Morris, R.V., et al.: The Athena MIMOS II Mössbauer spectrometer investigation. J. Geophys. Res. 108(E12), 8067 (2003). doi:10.1029/2003JE002138 CrossRefGoogle Scholar
  2. 2.
    Morris, R.V., Klingelhöfer, G., et al.: Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. 111, E02S13 (2006). doi:10.1029/2005JE002584 CrossRefGoogle Scholar
  3. 3.
    Morris, R.V., Klingelhöfer, G., et al.: Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 111, E12S15 (2006). doi:10.1029/2006JE002791 CrossRefGoogle Scholar
  4. 4.
    Agresti, D., Bent, M., Persson, B.: A versatile computer program for analysis of Mössbauer spectra. Nucl. Instr. Meth. 72, 235–236 (1969)CrossRefGoogle Scholar
  5. 5.
    Bent, M.F., Persson, B.I., Agresti, D.G.: Versatile program for analysis of Mössbauer spectra. Comput. Phys. Commun. 1, 67–87 (1969)CrossRefADSGoogle Scholar
  6. 6.
    Agresti, D., Kankeleit, Persson, B.: Hyperfine interaction and isomer shift in 195Pt. Phys. Rev. 155, 1339–1341 (1967)CrossRefADSGoogle Scholar
  7. 7.
    Agresti, D.G., Dyar, M.D., Schaefer, M.W.: Velocity scales for Mars Mössbauer data. Hyperfine Interact. 170, 67–74 (2006). doi:10.1007/s10751-006-9472-5 CrossRefADSGoogle Scholar
  8. 8.
    Agresti, D.G., Belton, M.L., Webb, J., Long, S.: Determination of transmission integral parameters by simultaneous fits to thick-absorber Mössbauer spectra: application to 151Eu2O3. In: Gruverman, I.J. et al. (eds.) Mössbauer effect methodology, vol. 9, pp. 225–243. Plenum, New York (1974)Google Scholar
  9. 9.
    Margulies, S., Ehrman, J.R.: Transmission and line broadening of resonance radiation incident on a resonant absorber. Nucl. Instr. Methods 12, 131–137 (1961)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations