Hyperfine Interactions

, Volume 185, Issue 1–3, pp 103–110 | Cite as

Conformational changes in hemoglobin triggered by changing the iron charge

  • S. CrociEmail author
  • K. Achterhold
  • I. Ortalli
  • F. G. Parak


In this work the hemoglobin conformational changes induced by changing the iron charge have been studied and compared with Myoglobin. Mössbauer spectroscopy was used to follow the change of the iron conformation. In order to compare the conformational relaxation of hemoglobin and myoglobin, and to study a possible influence of the quaternary structure, an intermediate metastable state of hemoglobin has been created by low temperature X-ray irradiation of methemoglobin. The irradiation reduces the Fe(III) of the heme groups to Fe(II) Low Spin, where the water is still bound on the sixth coordination. Heating cycles performed at temperatures from 140 K to 200 K allow the molecules to overcome an activation energy barrier and to relax into a stable conformation such as deoxy-hemoglobin or carboxy-hemoglobin, if CO is present. Slightly different structures (conformational substates) reveal themselves as a distribution of energy barriers (ΔG#). The distribution of the activation energy, for the decay of the Fe(II) Low Spin intermediate, has been fitted with a Gaussian. For comparison, published myoglobin data were re-analysed in the same way. The average energy value at characteristic temperature is very similar in case of myoglobin and hemoglobin. The larger Gaussian energy distribution for myoglobin with respect to hemoglobin shows that more conformational substates are available. This may be caused by a larger area exposed to water. In hemoglobin, part of the surface of the chains is not water accessible due to the quaternary structure.


Conformational changes Hemoglobin Free activation energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parak, F.G., Nienhaus, G.U.: Myoglobin, a paradigm in the study of protein dynamics. Chem. Phys. Chem. 3, 249–254 (2002)Google Scholar
  2. 2.
    Frauenfelder, H., Parak, F., Young, R.D.: Conformational substates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17, 451–479 (1988)CrossRefGoogle Scholar
  3. 3.
    Austin, R.H., Beeson, K.W., Eisenstein, L., Frauenfelder, H., Gunsalus, I.C., Austin: Dynamics of ligand binding to myoglobin. Biochemistry 14(24), 5355–5373 (1975)CrossRefGoogle Scholar
  4. 4.
    Young, R.D., Bowne, S.F.: Conformational substates and barrier height distributions in ligand binding to heme proteins. J. Chem. Phys. 81, 3730–3737 (1984)CrossRefADSGoogle Scholar
  5. 5.
    Parak, F., Formanek, H.: Untersuchung des Schwingungsanteils und des Kristallgitterfehleranteils des Temperaturfaktors in Myoglobin durch Vergleich von Mössbauerabsorptionsmessungen mit Röntgenstrukturdaten. Acta Crystallogr. A27, 573–578 (1971)ADSGoogle Scholar
  6. 6.
    Parak, F., Knapp, E.W., Kucheida, D.: Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J. Mol. Biol. 161, 177–194 (1982)CrossRefGoogle Scholar
  7. 7.
    Doster, W., Cusack, S., Petry, W.: Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989)CrossRefADSGoogle Scholar
  8. 8.
    Ferrand, M., Dianoux, A.J., Petry, W., Zaccai, G.: Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc. Natl. Acad. Sci. (USA) 90, 9669–9672 (1993)ADSGoogle Scholar
  9. 9.
    Parak, F.: Protein in action: the physics of structural fluctuation and conformational changes. Curr. Opin. Struck. Biol. 13, 552–557 (2003)CrossRefGoogle Scholar
  10. 10.
    Bizzarri, A.R., Iakovleva, O.A., Parak, F.: Spin–lattice relaxation in Mössbauer spectra of metmyoglobin: investigation of crystals, water and water–glycerol solutions. Chem. Phys. 191, 185–194 (1995)CrossRefGoogle Scholar
  11. 11.
    Prusakov, V.E., Steyer, J., Parak, F.G.: Mössbauer spectroscopy on nonequilibrium states of myoglobin: a study of r–t relaxation. Biophys. J. 68, 2524–2530 (1995)ADSGoogle Scholar
  12. 12.
    Chevion, M., Ilan, Y.A., Samuni, A., Navok, T., Czapski, G.: Quaternary structure of methemoglobin. Pulse radiolysis study of the binding of oxygen to the valence hybrid. J. Biom. Chem. 254(14), 6370–6374 (1979)Google Scholar
  13. 13.
    Teale, F.W.J.: Cleavage of the heme–protein link by acid methylethylketone. Biochim. Biophys. Acta 535, 543 (1959)CrossRefGoogle Scholar
  14. 14.
    Parak, F.: Physical aspects of proteins dynamics. Rep. Prog. Phys. 66, 103–129 (2003)CrossRefADSGoogle Scholar
  15. 15.
    Salvay, A.G., Grigera, J.R., Colombo, M.F.: The role of hydration on the mechanism of allosteric regulation: in situ measurements of the oxygen-link kinetics of water binding to hemoglobin. Biophys. J. 84, 564–570 (2003)CrossRefADSGoogle Scholar
  16. 16.
    Schmidt, M., Parak, F., Corongiu, G.: Density distributions in the water shell of myoglobin. Int. J. Quant. Chem. 59, 263–269 (1996)CrossRefGoogle Scholar
  17. 17.
    Parak, F., Hartmann, H., Schmidt, M., Corongiu, G., Clementi, E.: The hydration shell of myoglobin. Eur. Biophys. J. 21, 313–320 (1992)CrossRefGoogle Scholar
  18. 18.
    Parak, F., Hartmann, H., Schmidt, M., Corongiu, G.: The hydration of myoglobin molecules. In: Palma MBP-V, M.U., Parak, F. (eds.) Conf. Proc. Ital. Phys. Soc., vol. 43, pp. 5–122 (1993)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Croci
    • 1
    Email author
  • K. Achterhold
    • 2
  • I. Ortalli
    • 1
  • F. G. Parak
    • 2
  1. 1.Departments of Public Health, INBB ParmaUniversity of ParmaParmaItaly
  2. 2.Physik-Department E17GarchingGermany

Personalised recommendations