Advertisement

Hyperfine Interactions

, Volume 181, Issue 1–3, pp 115–125 | Cite as

Cross-relaxation in multiple pulse NQR spin-locking

  • P. A. Beltjukov
  • G. E. Kibrik
  • G. B. FurmanEmail author
  • S. D. Goren
Article
  • 37 Downloads

Abstract

The experimental and theoretical NQR multiple-pulse spin locking study of cross-relaxation process in solids containing nuclei of two different sorts I > 1/2 and S = 1/2 coupled by the dipole–dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of the both spin systems describing the mutual spin lattice relaxation and the cross-relaxation were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence describing by a sum of two exponents. The cross relaxation time is calculated as a function of the multiple-pulse field parameters which agree with the experimental data. The calculated magnetization cross relaxation time vs the strength of the applied magnetic field agrees well with the obtained experimental data.

Keywords

Nuclear quadrupole resonance Cross relaxation Multiple-pulse spin locking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloembergen, N., Sorokin, P.P.: Phys. Rev. 110, 865 (1958)CrossRefADSGoogle Scholar
  2. 2.
    Bloembergen, N., Shapiro, S., Peshan, P.S., Artman, J.O.: Phys. Rev. 114, 445 (1959)CrossRefADSGoogle Scholar
  3. 3.
    Jeener, J.: Advances in Magnetic Resonance 3, 205 (1968)Google Scholar
  4. 4.
    Goldman, M.: Spin Temperature and Nuclear Magnetic Resonance in Solids. Clarendon, Oxford (1970)Google Scholar
  5. 5.
    Marino, R., Klainer, S.M.: J. Chem. Phys. 67, 3388 (1977)CrossRefADSGoogle Scholar
  6. 6.
    Osokin, D.Ya.:. Phys. Status Solidi B 102, 681 (1980)CrossRefGoogle Scholar
  7. 7.
    Aibinder, N.E., Furman, G.B.: Sov. Phys. JETP 58, 575, (1983)Google Scholar
  8. 8.
    Hartmann, S.R., Hahn, E.L.: Phys. Rev. 128, 2042 (1962)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    Mehring, M.: Principles of High Resolution NMR in Solids, 2nd edn., Chap. 4. Springer, New York (1983)Google Scholar
  10. 10.
    Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics, Consultants Bureau. New York (1974)Google Scholar
  11. 11.
    Kunwar, A.C., Turner, G.L., Oldfield, E.: J. Magn. Reson. 69, 124 (1986)Google Scholar
  12. 12.
    Furman, G.B., Kibrik, G.E., Yu Poljakov, A., Shaposhnikov, I.G.: J. Mol. Struc. 192, 207 (1989)CrossRefADSGoogle Scholar
  13. 13.
    Bayer, H.: Z. Phys. 130, 227 (1951)CrossRefADSGoogle Scholar
  14. 14.
    Abragam, A.: The Principles of Nuclear Magnetism. Clarendon Press, Oxford (1961)Google Scholar
  15. 15.
    Furman, G.B., Shaposhnikov, I.G.: J. Mol. Struc. 321, 239 (1994)CrossRefADSGoogle Scholar
  16. 16.
    Svetlov, M.Yu., Furman, G.B.: Izv. Vuzov, Radiofizika 30, 557 (1987)Google Scholar
  17. 17.
    Kibrik, G.E., Poljakov, A.Yu.: J. Mol. Struc. 345, 245 (1995)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. A. Beltjukov
    • 1
  • G. E. Kibrik
    • 1
  • G. B. Furman
    • 2
    • 3
    Email author
  • S. D. Goren
    • 2
  1. 1.Physics DepartmentPerm State UniversityPermRussia Federation
  2. 2.Physics DepartmentBen Gurion UniversityBeer ShevaIsrael
  3. 3.Ohalo CollegeQazrinIsrael

Personalised recommendations