Hyperfine Interactions

, Volume 177, Issue 1–3, pp 27–31 | Cite as

The gap level of bond-centred muonium in diamond

  • M. Madhuku
  • D. Gxawu
  • S. H. Connell
  • I. Z. Machi
  • J. M. Keartland
  • S. F. J. Cox
  • P. J. C. King


Muonium, with a positive muon as the nucleus is considered a light isotope of hydrogen displaying a close chemical analogy to this atom. It offers a unique opportunity to study the behaviour of hydrogen in diamond at very low concentrations. The mass difference, however, implies that dynamical effects will be distinct. The bond centred muonium (Mu BC ) state in diamond is easily observed and there is a very good correlation between theoretical and experimental hyperfine parameters (Schneider et al., Phys. Rev. Lett. 71(4):557–560, 1993). Curiously, despite its predicted stability, the bond centred hydrogen state has not yet been observed in diamond. Following the discovery of hydrogen dopant states in certain wide band gap metal oxides, and the possibility of hydrogen related molecular dopants in diamond, the study of hydrogen in diamond is important. Although it is evident from its hyperfine parameters that Mu BC is not a shallow donor, the question still arises as to where the Mu BC state in diamond might lie in the band gap. Accordingly, measurements of the high temperature stability of Mu BC have been performed in a search for its possible ionization. The results are consistent with such an ionization, as the disappearance of Mu BC polarisation (setting in near 1000 K) is correlated with the slight increase in the population of the diamagnetic μ+ species.


Bond centered muonium Donor state Muon spin rotation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schneider, J.W., Kiefl, R.F., Chow, K.H., Johnson, S., Sonier, J., Estle, T.L., Hitti, B., Lichti, R.L., Connell, S.H., Sellschop, J.P.F., Smallman, C.G., Anthony, T.R., Banholzer, W.F.: Bond-centered muonium in diamond: resolved nuclear hyperfine structure. Phys. Rev. Lett. 71(4), 557–560 (1993)CrossRefADSGoogle Scholar
  2. 2.
    Patterson, B.D., Hintermann, A., Kündig, W., Meier, P.F., Wadner, F., Graf, H., Recknagel, E., Weidinger, A., Wicher, Th.: Anomalous muonium in silicon. Phys. Rev. Lett. 40(20), 1347–1350 (1978)CrossRefADSGoogle Scholar
  3. 3.
    Holzschuh, E., Graf, H., Recknagel, E., Weidinger, A., Wichert, Th., Meier, P.F.: Muonium states in germanium. Phys. Rev. B 20(11), 4391–4396 (1979)CrossRefADSGoogle Scholar
  4. 4.
    Machi, I.Z., Connell, S.H., Baker, M., Sellschop, J.P.F., Bharuth-Ram, K., Fischer, C.G., Nilen, R.W., Cox, S.F.J., Butler, J.E.: A new muonium trap in nitrogen-rich diamond discovered by μSR. Physica B 289290, 507–510 (2000)CrossRefGoogle Scholar
  5. 5.
    Goss, J.P.: Theory of hydrogen in diamond. J. Phys. Condens. Matter 15, R551–R580 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Patterson, B.D.: Muonium states in semiconductors. Rev. Mod. Phys. 60(1), 69–159 (1988)CrossRefADSGoogle Scholar
  7. 7.
    Odermatt, W., Baumeler, Hp., Keller, H., Kündig, W., Patterson, B.D., Schneider, J.W., Sellschop, J.P.F., Stemmet, M.C., Connell, S.H., Spencer, D.P.: Sign of the hyperfine parameters of anomalous muonium in diamond. Phys. Rev. B 38(7), 4388–4393 (1988)CrossRefADSGoogle Scholar
  8. 8.
    Pratt, F.L.: WIMDA: a muon data analysis program for the Windows PC. Physica B 289–290, 710–714 (2000)CrossRefGoogle Scholar
  9. 9.
    Mainwood, A.: Nitrogen and nitrogen-vacancy complexes and their formation in diamond. Phys. Rev. B 49(12), 7934–7940 (1994)CrossRefADSGoogle Scholar
  10. 10.
    Loubser, J.H.N., Van Wyk, J.A.: Electron spin resonance in the study of diamond. Rep. Prog. Phys. 41, 1201–1248 (1978)CrossRefADSGoogle Scholar
  11. 11.
    Van Wyk, J.A.: Carbon-12 hyperfine interaction of the unique carbon of the P2 (ESR) or N3 (optical) centre in diamond. J. Phys. C Solid State Phys. 15, L981–L983 (1982)CrossRefGoogle Scholar
  12. 12.
    Singh, A.: A study of hydrogen sites in amorphous semiconductors by MuSR a novel repolarization curve technique. J. Mater. Sci. 31(8), 1991–1996 (1996)CrossRefGoogle Scholar
  13. 13.
    Odermatt, W., Baumeler, Hp., Keller, H., Kündig, W., Patterson, B.D., Schneider, J.W., Sellschop, J.P.F., Stemmet, M.C., Connell, S., Spencer, D.P.: Absolute sign of the Mu* hyperfine parameters in diamond. Hyperfine Interact. 32, 583–588 (1986)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Madhuku
    • 1
  • D. Gxawu
    • 2
  • S. H. Connell
    • 3
  • I. Z. Machi
    • 4
  • J. M. Keartland
    • 1
  • S. F. J. Cox
    • 5
  • P. J. C. King
    • 5
  1. 1.School of PhysicsUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Physics DepartmentDurban University of TechnologyDurbanSouth Africa
  3. 3.Department of PhysicsUniversity of JohannesburgJohannesburgSouth Africa
  4. 4.iThemba LABS – GautengJohannesburgSouth Africa
  5. 5.ISIS FacilityRutherford Appleton LaboratoryChiltonUK

Personalised recommendations