Hyperfine Interactions

, Volume 173, Issue 1–3, pp 123–131 | Cite as

The TITAN mass measurement facility at TRIUMF-ISAC

  • P. Delheij
  • L. Blomeley
  • M. Froese
  • G. Gwinner
  • V. Ryjkov
  • M. Smith
  • J. Dilling
Article

Abstract

The TITAN facility at TRIUMF-ISAC will use four ion traps with the primary goal of determining nuclear masses with high precision, particularly for short lived isotopes with lifetimes down to approximately 10 ms. The design value for the accuracy of the mass measurement is 1 ×10 − 8. The four main components in the facility are an RF cooler/buncher (RFCT) receiving the incoming ion beam, an electron beam ion trap (EBIT) to breed the ions to higher charge states, a cooler Penning trap (CPET) to cool the highly charged ions, and finally the measurement Penning trap (MPET) for the precision mass determination. Additional goals for this system are laser spectroscopy on ions extracted from the RFCT and beta spectroscopy in the EBIT (in Penning trap mode) on ions that are purified using selective buffer gas cooling in the CPET. The physics motivation for the mass measurements are manifold, from unitarity tests of the CKM matrix to nuclear structure very far from the valley of stability, nuclear astrophysics and the study of halo-nuclei. As a first measurement the mass of 11Li will be determined. With a lifetime of 8.7 ms and a demonstrated production rate of 4×104 ions/sec at ISAC the goal for this measurement at TITAN is a relative uncertainty of 5×10 − 8. This would check previous conflicting measurements and provide information for nuclear theory and models.

Keywords

Nuclear mass Standard model Halo nucleus Shell closure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dilling, J., et al.: Nucl. Instrum. Methods B204, 492 (2003)ADSGoogle Scholar
  2. 2.
    Dilling, J., et al.: Int. J. Mass Spectrom. 251, 198 (2006)CrossRefGoogle Scholar
  3. 3.
    Dombsky, M., et al.: Nucl. Instrum. Methods A701, 484c (2002)Google Scholar
  4. 4.
    Savard, G., et al.: Phys. Rev. Lett. 95, 102501 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Rodriguez, D., et al.: Phys. Rev. Lett. 93, 161104 (2004)CrossRefADSGoogle Scholar
  6. 6.
    Bollen, G., et al.: Phys. Rev. Lett. 96, 152501 (2006)CrossRefADSGoogle Scholar
  7. 7.
    Eronen, T., et al.: Phys. Lett. B96, 191 (2006)ADSGoogle Scholar
  8. 8.
    Rahaman, S., et al.: Int. J. Mass Spectrom. 251, 146 (2006)CrossRefGoogle Scholar
  9. 9.
    Baum, K.: Phys. Rep. 425, 1 (2006)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Frekers, D., et al.: Can J. Phys. 85, 57 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Lapierre, A., et al.: Phys. Rev. Lett. 95, 183001 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Lunney, D., et al.: Rev. Mod. Phys. 75, 1021 (2003).CrossRefADSGoogle Scholar
  13. 13.
    Froehlich, C., et al.: Phys. Rev. Lett. 96, 142502 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Pruet, J., et al.: Astrophys. J. 644, 1028 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Tanihata, I., et al.: Phys. Rev. Lett. 55, 2670 (1985)CrossRefADSGoogle Scholar
  16. 16.
    Bachelet, C., et al.: Eur. Phys. J. A25 s01, 31 (2005)Google Scholar
  17. 17.
    Audi, G., et al.: Nucl. Phys. A729, 337 (2003)ADSGoogle Scholar
  18. 18.
    Sanchez, R., et al.: Phys. Rev. Lett. 96, 033002 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Hardy, J.C., Towner, I.S.: Phys. Rev. Lett. 94, 09202 (2005)Google Scholar
  20. 20.
    Savajols, H., et al.: Eur. Phys. J. A25, 23 (2005)Google Scholar
  21. 21.
    Smith, M., et al.: Hyperfine Interact., doi:10.1007/s10751-007-9554-z
  22. 22.
    Froese, M., et al.: Hyperfine Interact., doi: 10.1007/s10751-007-9546-z
  23. 23.
    Ke, Z., et al.: Hyperfine Interact., doi:10.1007/s10751-007-9548-x
  24. 24.
    Rainville, S., et al.: Science 303, 334 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • P. Delheij
    • 1
  • L. Blomeley
    • 1
  • M. Froese
    • 1
  • G. Gwinner
    • 2
  • V. Ryjkov
    • 3
  • M. Smith
    • 3
  • J. Dilling
    • 3
  1. 1.TRIUMFVancouverCanada
  2. 2.Physics and Astronomy DepartmentUniversity of ManitobaWinnipegCanada
  3. 3.VancouverCanada

Personalised recommendations