Advertisement

Hyperfine Interactions

, Volume 174, Issue 1–3, pp 1–7 | Cite as

Towards scaling up trapped ion quantum information processing

  • D. LeibfriedEmail author
  • D. J. Wineland
  • R. B. Blakestad
  • J. J. Bollinger
  • J. Britton
  • J. Chiaverini
  • R. J. Epstein
  • W. M. Itano
  • J. D. Jost
  • E. Knill
  • C. Langer
  • R. Ozeri
  • R. Reichle
  • S. Seidelin
  • N. Shiga
  • J. H. Wesenberg
Article

Abstract

Recent theoretical advances have identified several computational algorithms that can be implemented utilizing quantum information processing (QIP), which gives an exponential speedup over the corresponding (known) algorithms on conventional computers. QIP makes use of the counter-intuitive properties of quantum mechanics, such as entanglement and the superposition principle. Unfortunately it has so far been impossible to build a practical QIP system that outperforms conventional computers. Atomic ions confined in an array of interconnected traps represent a potentially scalable approach to QIP. All basic requirements have been experimentally demonstrated in one and two qubit experiments. The remaining task is to scale the system to many qubits while minimizing and correcting errors in the system. While this requires extremely challenging technological improvements, no fundamental roadblocks are currently foreseen.

Keywords

Quantum information Ion traps Scalability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)CrossRefADSGoogle Scholar
  2. 2.
    DiVincenzo, D.P.: The physical implementation of quantum computation. In: Braunstein, S.L., Lo, H.K., Kok, P. (eds.) Scalable Quantum Computers. Wiley-VCH, Berlin (2001)Google Scholar
  3. 3.
    DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995)CrossRefADSGoogle Scholar
  4. 4.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)CrossRefADSGoogle Scholar
  5. 5.
    Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C., Eschner, J., Blatt, R.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Solano, E., de Matos Filho, R.L., Zagury, N.: Deterministic Bell states and measurement of the motional state of two trapped ions. Phys. Rev. A 59, 2539–2542 (1999)CrossRefADSGoogle Scholar
  8. 8.
    Milburn, G.J., Schneider, S., James, D.F.V.: Ion trap quantum computing with warm ions. In: Braunstein, S.L., Lo, H.K., Kok, P. (eds.) Scalable Quantum Computers. Wiley-VCH, Berlin (2001)Google Scholar
  9. 9.
    Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J., Monroe, C.: Experimental entanglement of four particles. Nature 404, 256–258 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Haljan, P.C., Brickman, K.A., Deslauriers, L., Lee, P.J., Monroe, C.: Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. Phys. Rev. Lett. 94, 153602 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Haljan, P.C., Lee, P.J., Brickman, K.A., Acton, M., Deslauriers, L., Monroe, C.: Entanglement of trapped-ion clock states. Phys. Rev. A 72, 062316 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Home, J.P., McDonnell, M.J., Lucas, D.M., Imreh, G., Keitch, B.C., Szwer, D.J., Thomas, N.R., Webster, S.C., Stacey, D.N., Steane, A.M.: Deterministic entanglement and tomography of ionŰspin qubits. New J. Phys. 8, 188 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Häffner, H., Hänsel, W., Roos, C.F., Benhelm, J., Chek-al-kar, D., Chwalla, M., Körber, T., Rapol, U.D., Riebe, M., Schmidt, P.O., Becher, C., Gühne, O., Dür, W., Blatt, R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643–646 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Leibfried, D., Knill, E., Seidelin, S., Britton, J., Blakestad, R.B., Chiaverini, J., Hume, D., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R., Wineland, D.J.: Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998)Google Scholar
  17. 17.
    Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Cirac, J.I., Zoller, P.: A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)CrossRefADSGoogle Scholar
  19. 19.
    DeVoe, R.G.: Elliptical ion traps and trap arrays for quantum computation. Phys. Rev. A 58, 910–914 (1998)CrossRefADSGoogle Scholar
  20. 20.
    Duan, L.M., Blinov, B.B., Moehring, D.L., Monroe, C.: Scalable trapped ion quantum computation with a probabilistic ion-photon mapping. Quant. Inform. Comp. 4, 165–173 (2004)MathSciNetGoogle Scholar
  21. 21.
    Wineland, D.J., Leibfried, D., Barrett, M.D., Ben-Kish, A., Bergquist, J.C., Blakestad, R.B., Bollinger, J.J., Britton, J., Chiaverini, J., DeMarco, B., Hume, D., Itano, W.M., Jensen, M., Jost, J.D., Knill, E., Koelemeij, J., Langer, C., Oskay, W., Ozeri, R., Reichle, R., Rosenband, T., Schaetz, T., Schmidt, P.O., :Seidelin, S. Quantum control, quantum information processing, and quantum-limited metrology with trapped ions. In: Hinds, E.A., Ferguson, A., Riis, E. (eds.) Laser Spectroscopy, Proceedings of the XVII International Conference on Laser Spectroscopy. Avemore, Scotland. World Scientific, Singapore (2005)Google Scholar
  22. 22.
    Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–739 (2004)CrossRefADSGoogle Scholar
  23. 23.
    Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M., Blakestad, R., Britton, J., Itano, W., Jost, J., Knill, E., Langer, C., Ozeri, R., Wineland, D.: Realization of quantum error correction. Nature 432, 602–605 (2004)CrossRefADSGoogle Scholar
  24. 24.
    Schaetz, T., Barrett, M.D., Leibfried, D., Chiaverini, J.B.J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Wineland, D.J.: Enhanced quantum state detection efficiency through quantum information processing. Phys. Rev. Lett. 94, 010501 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Chiaverini, J., Britton, J., Leibfried, D., Knill, E., Barrett, M.D., Blakestad, R.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Schaetz, T., Wineland, D.J.: Implementation of the semiclassical quantum fourier transform in a scalable system. Science 308, 997–1000 (2005)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Reichle, R., Leibfried, D., Knill, E., Britton, J., Blakestad, R.B., Jost, J.D., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.J.: Experimental purification of two-atom entanglement. Nature 443, 838–841 (2006)CrossRefADSGoogle Scholar
  27. 27.
    Wineland, D.J.: Trapped ions and quantum information processing. In: Martini, F.D., Monroe, C. (eds.) Experimental quantum computation and information. Proceedings of the International School of Physics “Enrico Fermi”. IOS Press, Amsterdam (2002)Google Scholar
  28. 28.
    Turchette, Q.A., Kielpinski, D., King, B.E., Leibfried, D., Meekhof, D.M., Myatt, C.J., Rowe, M.A., Sackett, C.A., Wood, C.S., Itano, W.M., Monroe, C., Wineland, D.J.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)CrossRefADSGoogle Scholar
  29. 29.
    Deslauriers, L., Olmschenk, S., Stick, D., Hensinger, W.K., Sterk, J., Monroe, C.: Scaling and suppression of anomalous quantum decoherence in ion traps. Phys. Rev. Lett. 97, 103007 (2006)CrossRefADSGoogle Scholar
  30. 30.
    Rowe, M.A., Ben-Kish, A., DeMarco, B., Leibfried, D., Meyer, V., Beall, J., Britton, J., Hughes, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Transport of quantum states and separation of ions in a dual RF ion trap. Quant. Inform. Comp. 2, 257–271 (2002)Google Scholar
  31. 31.
    Madsen, M.J., Hensinger, W.K., Stick, D., Rabchuk, J.A., Monroe, C.: Planar ion trap geometry for microfabrication. Appl. Phys. B 78, 639–651 (2004)CrossRefADSGoogle Scholar
  32. 32.
    Stick, D., Hensinger, W.K., Olmschenk, S., Madsen, M.J., Schwab, K., Monroe, C.: Ion trap in a semiconductor chip. Nat. Phys. 2, 36–39 (2006)CrossRefGoogle Scholar
  33. 33.
    Deslauriers, L., Haljan, P.C., Lee, P.J., Brickman, K.A., Blinov, B.B., Madsen, M.J., Monroe, C.: Zero-point cooling and low heating of trapped 111Cd+ ions. Phys. Rev. A 70, 043408 (2004)CrossRefADSGoogle Scholar
  34. 34.
    Home, J.P., Steane, A.M.: Electrode configurations for fast separation of trapped ions. Quant. Inform. Comp. 6, 289–325 (2006)Google Scholar
  35. 35.
    Hensinger, W.K., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., Deslauriers, L., Monroe, C.: T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88, 034101 (2006)CrossRefADSGoogle Scholar
  36. 36.
    Chiaverini, J., Blakestad, R.B., Britton, J., Jost, J.D., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Surface-electrode architectre for ion-trap quantum informaion processing. Quant. Inform. Comp. 5, 419–439 (2005)MathSciNetGoogle Scholar
  37. 37.
    Kim, J., Pau, S., Ma, Z., McLellan, H.R., Gates, J.V., Kornblit, A., Slusher, R.E., Jopson, R.M., Kang, I., Dinu, M.: System design for large-scale ion trap quantum information processor. Quant. Inform. Comp. 5, 515–537 (2005)Google Scholar
  38. 38.
    Seidelin, S., Chiaverini, J., Reichle, R., Bollinger, J.J., Leibfried, D., Britton, J., Wesenberg, J.H., Blakestad, R.B., Epstein, R.J., Hume, D.B., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Shiga, N., Wineland, D.J.: Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006)CrossRefADSGoogle Scholar
  39. 39.
    Britton, J., Leibfried, D., Beall, J., Blakestad, R.B., Bollinger, J.J., Chiaverini, J., Epstein, R.J., Jost, J.D., Kielpinski, D., Langer, C., Ozeri, R., Reichle, R., Seidelin, S., Shiga, N., Wesenberg, J.H., Wineland, D.J.: A microfabricated surface-electrode ion trap in silicon. Passive cooling of a micromechanical oscillator with a resonant electric circuit. arXiv:0705.1197v1 (2006)Google Scholar
  40. 40.
    Brown, K.R., Clark, R.J., Labaziewicz, J., Richerme, P., Leibrandt, D.R., Chuang, I.L.: arXiv:quant-ph/0605170v1 (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • D. Leibfried
    • 1
    Email author
  • D. J. Wineland
    • 1
  • R. B. Blakestad
    • 1
  • J. J. Bollinger
    • 1
  • J. Britton
    • 1
  • J. Chiaverini
    • 1
    • 2
  • R. J. Epstein
    • 1
  • W. M. Itano
    • 1
  • J. D. Jost
    • 1
  • E. Knill
    • 1
  • C. Langer
    • 1
  • R. Ozeri
    • 1
  • R. Reichle
    • 1
    • 3
  • S. Seidelin
    • 1
  • N. Shiga
    • 1
  • J. H. Wesenberg
    • 1
  1. 1.NISTBoulderUSA
  2. 2.LANLLos AlamosUSA
  3. 3.University of UlmUlmGermany

Personalised recommendations