Hyperfine Interactions

, Volume 173, Issue 1–3, pp 171–180 | Cite as

First tests of the TITAN digital RFQ beam cooler and buncher

  • Mathew Smith
  • Laura Blomeley
  • Paul Delheij
  • Jens Dilling
Article

Abstract

A digital RFQ beam cooler and buncher has been developed as part of the TITAN facility. Following a brief review of the theory of ion motion in such a trap, a description of the RFQ and the experimental setup used for initial testing of the trap is given. Results from the tests are also presented. A square-wave-generator, which uses two stacks of six MOSFETs, has been built. The generator has been shown to be able to drive the RFQ with an amplitude of 400 Vpp at up to 1 MHz. The RFQ has been commissioned using a stable ion source and beam pulses with emittances on the order of 8π mm mrad at 4 keV extraction energy have been observed.

Keywords

RFQ confinement Buffer-gas cooling Digital ion trap 

PACS

29.27.Ac 29.27.Eg 41.85.-p 41.85.Ar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dilling, J., et al.: Mass measurements on highly charged radioactive ions, a new approach to high precision with TITAN. Int. J. Mass Spectrom. 251, 198–203 (2006)CrossRefGoogle Scholar
  2. 2.
    Dombsky, M., et al.: Online isotope separation at ISAC with a 10 μ A proton driver beam. Nucl. Phys., A 701, 486–490 (2002)CrossRefADSGoogle Scholar
  3. 3.
    Herfurth, F., et al.: A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instrum. Methods, A 469, 254–275 (2001)CrossRefADSGoogle Scholar
  4. 4.
    Nieminen, A., et al.: Beam cooler for low-energy radioactive ions. Nucl. Instrum. Methods, A 469, 244–253 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Richards, J.A., Huey, R.M., Hiller, J.: A new operating mode for the quadrupole mass filter. Int. J. Mass Spectrom. Ion Phys. 12, 317–339 (1973)CrossRefGoogle Scholar
  6. 6.
    Vaz, J.: Precision mass measurements of some isotopes of platinum. Ph.D. thesis, University of Manitoba (2002)Google Scholar
  7. 7.
    Sudakov, M., Nikolaev, E.: Ion motion stability diagram for distorted square waveform trapping voltage. Eur. J. Mass Spectrom. 8, 191–199 (2002)CrossRefGoogle Scholar
  8. 8.
    Ding, L., et al.: A digital ion trap mass spectrometer coupled with atmospheric pressure ion sources. J. Mass Spectrom. 39, 471–484 (2004)CrossRefGoogle Scholar
  9. 9.
    Ding, L., Sudakov, M., Kumashiro, S.: A simulation study of the digital ion trap mass spectrometer. Int. J. Mass Spectrom. 221, 117–138 (2002)CrossRefGoogle Scholar
  10. 10.
    Ghosh, P.K.: Ion Traps. Oxford University Press, Oxford (1995)Google Scholar
  11. 11.
    Meissner, E.: Ueber Schuettelschwingungen in Systemen mit periodisch veraenderlicher Elastizitaet. Schweiz. Bauztg. 72, 95–98 (1918)Google Scholar
  12. 12.
    Floquet, G.: Sur les équations différentielles linéaires à coefficients doublement périodiques. Ann. Ecole. Norm. Sup. Paris 12, 47–88 (1883)MathSciNetGoogle Scholar
  13. 13.
    Pipes, L.A.: Matrix solution of equations of the Mathieu–Hill type. J. Appl. Phys. 24, 902–910 (1953)MATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Barnes, M.J., Wait, G.D.: A 25 kV, 75 kHz, kicker for measurement of muon lifetime. In: Giesselmann, M. (ed.) PPC-2003:14th IEEE International Pulsed Power Conference: Digest of Technical Papers, vol. 2, pp. 1407–1410. Dallas, Texas, 15-18 June 2003, (2003)Google Scholar
  15. 15.
    Allison, P.W., Sherman, J.D., Holtkamp, D.B.: An emittance scanner for intense low-energy ion beams. IEEE Trans. Nucl. Sci. NS-30(4), 2204–2206 (1983)CrossRefADSGoogle Scholar
  16. 16.
    Smith, M.: A square-wave-driven radiofrequency cooler and buncher for TITAN. M.Sc. thesis, University of British Columbia (2005)Google Scholar
  17. 17.
    Moore, B. et al.: The use of high RFQ fields to manipulate ions. Int. J. Mass Spectrom. 251, 190–197 (2006)CrossRefGoogle Scholar
  18. 18.
    Hadary, O., Barnes, M., Wait, G.: Distributed Capacitance of TITAN RFQ Driver and RFQ Structure, Extraction Electrode Considerations and Power Dissipation in the Driver. TRIUMF Design Note, TRI-DN-04-26 (2004)Google Scholar
  19. 19.
    Dahl, D.A.: SIMION for the personal computer in reflection. Int. J. Mass Spectrom. 200, 3–5 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Mathew Smith
    • 1
  • Laura Blomeley
    • 2
  • Paul Delheij
    • 3
  • Jens Dilling
    • 3
  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of PhysicsMcGill UniversityMontrealCanada
  3. 3.TRIUMF, 4004 Wesbrook MallVancouverCanada

Personalised recommendations