Hyperfine Interactions

, Volume 173, Issue 1–3, pp 103–111 | Cite as

A cooler ion trap for the TITAN on-line trapping facility at TRIUMF

  • Z. Ke
  • W. Shi
  • G. Gwinner
  • K. Sharma
  • S. Toews
  • J. Dilling
  • V. L. Ryjkov
  • the TITAN Collaboration
Article

Abstract

We present simulations of electron and proton cooling of highly charged ions in a Penning trap, including the potentially detrimental effects of radiative, dielectronic, and three-body recombination in electron cooling. We show a preliminary design for a cooler trap accommodating both electron and proton cooling, which will be a component of the TITAN ion-trap facility under construction at TRIUMF for precision mass measurements of short-lived radioactive nuclei.

Keywords

Ion cooler trap Electron cooling Proton cooling Highly charged ions Mass spectrometry 

PACS

39.10.+j 32.80.Pj 82.80.Qx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dilling, J., Bricault, P., Smith, M., Kluge, H.-J., TITAN Collaboration: The proposed TITAN facility at ISAC for very precise mass measurements on highly charged short-lived isotopes. Nucl. Instrum. Methods B 204, 492–496 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1–78 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Hall, D.S., Gabrielse, G.: Electron cooling of protons in a nested Penning trap. Phys. Rev. Lett. 77, 1962–1965 (1996)CrossRefADSGoogle Scholar
  4. 4.
    Ryjkov, V.L., Blomeley, L., Brodeur, M., Grothkopp, P., Smith, M., Bricault, P., Buchinger, F., Crawford, J., Gwinner, G., Lee, J., Vaz, J., Werth, G., Dilling, J., and the TITAN Collaboration: TITAN project status report and a proposal for a new cooling method of highly charged ions. Eur. Phys. J. A 25, 53–56 (2005)CrossRefGoogle Scholar
  5. 5.
    Bollen, G., Becker, S., Kluge, H.-J., König, M., Moore, R.B., Otto, T., Raimbault-Hartmann, H., Savard, G., Scheikhard, L., Stolzenberg, H.: ISOLTRAP: A tandem Penning trap system for accurate on-line mass determination of short-lived isotopes. The ISOLDE collaboration. Nucl. Instrum. Methods A 368, 675–697 (1996)CrossRefADSGoogle Scholar
  6. 6.
    Rolston, S.L., Gabrielse, G.: Cooling antiprotons in an ion trap. Hyperfine Interact. 44, 233–246 (1988)CrossRefADSGoogle Scholar
  7. 7.
    Bernard, J., Alonso, J., Beier, T., Block, M., Dejkić, S., Kluge, H.-J., Kozhuharov, C., Quint, W., Stahl, S., Valenzuela, T., Verdú, J., Vogel, M., Werth, G.: Electron and position cooling of highly charged ions in a cooler Penning trap. Nucl. Instrum. Methods A 532, 224–228 (2004)CrossRefADSGoogle Scholar
  8. 8.
    Mollers, B., Toepffer, C., Walter, M., Zwicknagel, G., Carli, C., Nersisyan, H.: Cooling of ions and antiprotons with magnetized electrons. Nucl. Instrum. Methdos A 532, 279 (2004)CrossRefADSGoogle Scholar
  9. 9.
    Spitzer, L.: Physics of Fully Ionized Gases. Interscience Publishers, New York (1956)MATHGoogle Scholar
  10. 10.
    Book, D.L.: In AIP physics desk reference, 3rd edition. Springer, ch. 21.8.2 (2003)Google Scholar
  11. 11.
    Müller, A., Wolf, A.: Production of antihydrogen by recombination of p-bar with e+: What can we learn from electron-ion collision studies? Hyperfine Interact. 109, 233 (1997)CrossRefADSGoogle Scholar
  12. 12.
    Tokman, M., Eklöw, N., Glans, P., Lindroth, E., Schuch, R., Gwinner, G., Schwalm, D., Wolf, A., Hoffknecht, A., Müller, A., Schippers, S.: Dielectron recombination resonances in F6+. Phys. Rev. A 66, 012703 (2002)CrossRefADSGoogle Scholar
  13. 13.
    Savin, D.W., Gwinner, G., Grieser, M., Repnow, R., Schnell, M., Schwalm, D., Wolf, A., Zhou, S.-G., Kieslich, S., Müller, A., Schippers, S., Colgan, J., Loch, S., Badnell, N., Chen, M., Gu, M.: Dielectronic recombination of Fe XXIII forming Fe XXII: Laboratory measurements and theoretical calculations. Astrophys. J. 642, 1275 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Fei, X., Snow, W.M.: Cylindrical Penning traps with dynamic orthogonalized anharmonicity compensation for precision experiments. Nucl. Instrum. Methods A 425, 431–440 (1999)CrossRefADSGoogle Scholar
  15. 15.
    Oshima, N., Kojima, T.M., Niigaki, M., Mohri, A., Komaki, K., Iwai, Y., Yamazaki, Y.: Development of a cold HCI source for ultra-slow collisions. Nucl. Instrum. Methods B 205, 178–182 (2003)CrossRefADSGoogle Scholar
  16. 16.
    Zwicknagel, G.: AIP Conf. Proc. 821: Beam cooling and related topics. p. 513 (2006)Google Scholar
  17. 17.
    Danielson, J., Surko, C.: Torque-balanced high-density steady states of single-component plasmas. Phys. Rev. Lett. 94, 035001 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Z. Ke
    • 1
  • W. Shi
    • 1
  • G. Gwinner
    • 1
  • K. Sharma
    • 1
  • S. Toews
    • 1
  • J. Dilling
    • 2
  • V. L. Ryjkov
    • 2
  • the TITAN Collaboration
  1. 1.Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
  2. 2.TRIUMFVancouverCanada

Personalised recommendations