Hyperfine Interactions

, Volume 172, Issue 1–3, pp 71–80 | Cite as

FLAIR – a facility for low-energy antiproton and ion research

Article

Abstract

In order to exploit the unique possibilities that will become available at the Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, a collaboration of about 50 institutes from 15 countries was formed to efficiently enable an innovative research program towards low-energy antimatter-physics. In the Facility for Low-energy Antiproton and Ion Research (FLAIR) antiprotons and heavy (radioactive) ions are slowed down from 30 MeV to energies as low as 20 keV by a magnetic low-energy storage ring (LSR) and an electrostatic ultra-low energy storage ring (USR) or are even brought to rest by a universal trap facility (HITRAP). In this paper, the facility and the research program covered are briefly described with some emphasis on the accelerator chain and the expected particle numbers.

Keywords

Low-energy antiprotons Storage rings Collision dynamics Reaction microscope 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Baird, S., et al.: The antiproton decelerator: AD. Proc. Part. Accel. Conf., 979 (1997)Google Scholar
  2. 2.
    Pirkl, W., Lombardi, A.M., Bylinsky, Y.: First operating experience with the CERN decelerating RFQ for antiprotons. Proc. Part. Accel. Conf., Chicago, USA, 585 (2001)Google Scholar
  3. 3.
    Welsch, C.P., Danared, H. for the FLAIR collaboration: FLAIR: a Facility for Low-Energy Antiproton and Ion Research. Proceedings of the Particle Accelerator Conference Series, Edinburgh, Scotland (2006)Google Scholar
  4. 4.
    Henning, W.F., Gutbrod, H.H., Groß, K.D., Metag, V. (eds.): An international facility for beams of ions and antiprotons (FAIR CDR), GSI Darmstadt (2001)Google Scholar
  5. 5.
    Ellis, J., Mavaromatos, N.E., Nanopoulos, D.V.: Testing quantum mechanics in the neutral kaon system. Phys. Lett. B 293, 142 (1992)CrossRefADSGoogle Scholar
  6. 6.
    Kostelecky, V.A., Potting, R.: CPT, strings, and meson factories. Phys. Rev. D 51, 3923 (1995)CrossRefADSGoogle Scholar
  7. 7.
    Gabrielse, G., et al.: Special relativity and the single antiproton: fortyfold improved comparison of pbar and p charge-to-mass ratios. Phys. Rev. Lett. 74, 3544 (1995)CrossRefADSGoogle Scholar
  8. 8.
    Amoretti, M., et al.: Production and detection of cold antihydrogen atoms. Nature 419, 456 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Gabrielse, G., et al.: Background-free observation of cold antihydrogen with field-ionization analysis of its states. Phys. Rev. Lett. 89 213401 (2002)CrossRefADSGoogle Scholar
  10. 10.
    Gabrielse, G., et al.: Driven production of cold antihydrogen and the first measured distribution of antihydrogen states. Phys. Rev. Lett. 89, 233401 (2002)CrossRefADSGoogle Scholar
  11. 11.
    Niering, M., et al.: Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a mircowave cesium fountain clock. Phys. Rev. Lett. 84, 5496 (2000)CrossRefADSGoogle Scholar
  12. 12.
    Hellwig, H., et al.: Measurement of the unperturbed hydrogen hyperfine transition frequency. IEEE Trans. Instrum. Meas. IM-19, 200 (1970)CrossRefGoogle Scholar
  13. 13.
    Essen, L., Donaldson, R.W., Bangham, M.J., Hope, E.G.: Frequency of the hydrogen maser. Nature 229, 110 (1971)CrossRefADSGoogle Scholar
  14. 14.
    Bluhm, R., Kostelecky, V.A., Russell, N.: CPT and Lorentz tests in Penning traps. Phys. Rev. D 57, 3932 (1998)CrossRefADSGoogle Scholar
  15. 15.
    Hughes, R.J.: Antihydrogen and fundamental symmetries. Hyperfine Interact. 76, (1993)Google Scholar
  16. 16.
    Rescigno, T.N., Baertschy, M., Isaacs, W.A., McCurdy, C.W.: Collisional breakup in a quantum system of three charged particles. Science 286, 2474 (1999)CrossRefGoogle Scholar
  17. 17.
    Baertschy, M., Rescigno, T.N., McCurdy, C.W.: Accurate amplitudes for electron-impact ionization. Phys. Rev. A 64, 022709 (2001)CrossRefADSGoogle Scholar
  18. 18.
    Kadyrov, A.S., Mukhamedzhanov, A.M., Stelbovics, A.T., Bray, I.: Integral representation for the electron-atom ionization amplitude which is free of ambiguity and divergence problems. Phys. Rev. Lett. 91, 253202 (2003)CrossRefADSGoogle Scholar
  19. 19.
    Trzcinska, A., et al.: Information on antiprotonic atoms and the nuclear periphery from the PS209 experiment. Nucl. Phys. A 692, 176c (2001)CrossRefADSGoogle Scholar
  20. 20.
    Quint, W., et al.: HITRAP: a facility for experiments with trapped highly charged ions. Hyperfine Interact. 132, 457 (2001)CrossRefADSGoogle Scholar
  21. 21.
    Danared, H., Källberg, A., Simonsson, A.: CRYRING Machine Studies for FLAIR. Proc. European Part. Acc. Conf., Edinburgh, UK (2006)Google Scholar
  22. 22.
    Møller, S.P.: ELISA – an electrostatic storage ring for atomic physics. Proc. European Part. Acc. Conf., Stockholm, Schweden (1998)Google Scholar
  23. 23.
    Tanabe, T., et al.: An Electrostatic Storage Ring for Atomic and Molecular Science. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 482, 595 (2002)CrossRefADSGoogle Scholar
  24. 24.
    Welsch, C.P., et al.: Electrostatic ring as the central machine of the Frankfurt ion storage experiments. Phys. Rev. Spec. Top., Accel. Beams 7, 80101 (2004)CrossRefADSGoogle Scholar
  25. 25.
    Welsch, C.P., Grieser, M., Wolf, A., Ullrich, J.: Layout of the USR at FLAIR. Proc. European Part. Acc. Conf., Edinburgh, UK (2006)Google Scholar
  26. 26.
    Welsch, C.P., Grieser, M., Ullrich, J., Wolf, A.: An ultra-low-energy storage ring at FLAIR. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 546, 405–417 (2005)CrossRefADSGoogle Scholar
  27. 27.
    Wolf, A., et al.: The Heidelberg CSR: low-energy ion beams in a cryogenic electrostatic storage ring. AIP Conf. Proc. 821, 473–477 (2006)CrossRefADSGoogle Scholar
  28. 28.
    Pastuszka, S., et al.: Preparation and performance of transmission-mode GaAs photocathodes as sources for cold DC electron beams. J. Appl. Phys. 88, 6788 (2000)CrossRefADSGoogle Scholar
  29. 29.
    Orlov, D., et al.: Energy distributions of electrons emitted from GaAS (Cs, O). Appl. Phys. Lett. 78, 2721 (2001)CrossRefADSGoogle Scholar
  30. 30.
    Welsch, C.P., Smirnov, A.: Cooling rates at ultra-low energy storage rings. Proc. European Part. Acc. Conf., Edinburgh, UK (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Max-Planck Institute for Nuclear PhysicsHeidelbergGermany
  2. 2.CERNEuropean Laboratory for Particle PhysicsGenevaSwitzerland

Personalised recommendations