Hyperfine Interactions

, Volume 170, Issue 1–3, pp 169–177 | Cite as

Two earth years of Mössbauer studies of the surface of Mars with MIMOS II

  • G. Klingelhöfer
  • R. V. Morris
  • P. A. De SouzaJr.
  • D. Rodionov
  • C. Schröder
Article

Abstract

The element iron plays a crucial role in the study of the evolution of matter from an interstellar cloud to the formation and evolution of the planets. In the Solar System iron is the most abundant metallic element. It occurs in at least three different oxidation states: Fe(0) (metallic iron), Fe(II) and Fe(III). Fe(IV) and Fe(VI) compounds are well known on Earth, and there is a possibility for their occurrence on Mars. In January 2004 the USA space agency NASA landed two rovers on the surface of Mars, both carrying the Mainz Mössbauer spectrometer MIMOS II. They performed for the first time in-situ measurements of the mineralogy of the Martian surface, at two different places on Mars, Meridiani Planum and Gusev crater, respectively, the landing sites of the Mars-Exploration-Rovers (MER) Opportunity and Spirit. After about two Earth years or one Martian year of operation the Mössbauer (MB) spectrometers on both rovers have acquired data from more than 150 targets (and more than thousand MB spectra) at each landing site. The scientific measurement objectives of the Mössbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe2+, Fe3+, and Fe6+), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the Mössbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels. The Mössbauer spectrometer on Opportunity at Meridiani Planum, identified eight Fe-bearing phases: jarosite (K,Na,H3O)(Fe,Al)(OH)6(SO4)2, hematite, olivine, pyroxene, magnetite, nanophase ferric oxides (npOx), an unassigned ferric phase, and a metallic Fe–Ni alloy (kamacite) in a Fe–Ni-meteorite. Outcrop rocks consist of hematite-rich spherules dispersed throughout S-rich rock that has nearly constant proportions of Fe3+ from jarosite, hematite, and npOx (28%, 35%, and 19% of total Fe). Jarosite is mineralogical evidence for aqueous processes under acid–sulfate conditions because it has structural hydroxide and sulfate and it forms at low pH. Hematite-rich spherules, eroded from the outcrop, and their fragments are concentrated as hematite-rich soils (lag deposits) on ripple crests (up to 68% of total Fe from hematite). Olivine, pyroxene, and magnetite are primarily associated with basaltic soils and are present as thin and locally discontinuous cover over outcrop rocks, commonly forming aeolian bedforms. Basaltic soils are more reduced (Fe3+/Fetotal ∼0.2−0.4), with the fine-grained and bright aeolian deposits being the most oxidized. Basaltic soil at Meridiani Planum and Gusev crater have similar Fe-mineralogical compositions. At Gusev crater, the Mössbauer spectrometer on the MER Spirit rover has identified 8 Fe-bearing phases. Two are Fe2+ silicates (olivine and pyroxene), one is a Fe2+ oxide (ilmenite), one is a mixed Fe2+ and Fe3+ oxide (magnetite), two are Fe3+ oxides (hematite and goethite), one is a Fe3+ sulfate (mineralogically not constrained), and one is a Fe3+ alteration product (npOx). The surface material in the plains have a olivine basaltic signature (Morris, et al., Science, 305: 833, 2004; Morris, et al., J. Geophys. Res., 111, 2006, Ming, et al., J. Geophys. Res., 111, 2006) suggesting physical rather than chemical weathering processes present in the plains. The Mössbauer signature for the Columbia Hills surface material is very different ranging from nearly unaltered material to highly altered material. Some of the rocks, in particular a rock named Clovis, contain a significant amount of the Fe oxyhydroxide goethite, α-FeOOH, which is mineralogical evidence for aqueous processes because it is formed only under aqueous conditions.

Key words

MIMOS II weathering Mars jarosite goethite hematite field distribution Gusev crater Meridiani Planum Mars-exploration-rovers mineralogy instrumentation backscattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klingelhöfer, G., Morris, R.V., Bernhardt, B., Rodionov, D., De Souza, P.A. Jr., Squyres, S.W., Foh, J., Kankeleit, E., Bonnes, U., Gellert, R., Schröder, C., Linkin, S., Evlanov, E., Zubkov, B., Prilutski, O.: J. Geophys. Res. 108, 8067 (2003)CrossRefGoogle Scholar
  2. 2.
    Morris, R.V., Klingelhöfer, G., Bernhardt, B., Schröder, C., Rodionov, D.S., De Souza, P.A. Jr., Yen, A., Gellert, R., Evlanov, E.N., Foh, J., Kankleit, E., Gütlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W., Arvidson, R.E.: Science 305, 833 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., De Souza, P.A. Jr., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankleit, E., Gütlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W., Arvidson, R.E.: Science 306, 1740 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Klingelhöfer, G.: In: Garcia, M., Marco, J.F., Plazaola, F. (eds.) Industrial Applications of the Mössbauer Effect. American Institute of Physics (2005)Google Scholar
  5. 5.
    Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza, P.A. Jr., Fleischer, I., Wdowiak, T., Gellert, R., Bernhardt, B., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Renz, F., Squyres, S.W., Arvidson, R.E.: J. Geophys. Res. 111, (2006) E02S12, DOI 10.1029/2005JE002560
  6. 6.
    Ming, D.W., Mittlefehldt, D.W., Morris, R.V., Golden, D.C., Gellert, R., Yen, A., Clark, B.C., Squyres, S.W., Farrand, W.H., Ruff, S.W., Arvidson, R.E., Klingelhöfer, G., McSween, H.Y., Rodionov, D.S., Schröder, C., De Souza, P.A. Jr., Wang, A.: J. Geophys. Res. 111, (2006) E02S12, DOI 10.1029/2005JE002560
  7. 7.
    Klingelhöfer, G., Held, P., Teucher, R., Schlichting, F., Foh, J., Kankeleit, E.: Hyperfine Interact. 95, 305–339 (1995)CrossRefADSGoogle Scholar
  8. 8.
    Squyres, S.W., et al.: J. Geophys. Res. 108, 8062 (2003) DOI 10.1029/2003JE002121 CrossRefGoogle Scholar
  9. 9.
    Klingelhöfer, G., DeGrave, E., Morris, R.V., Van Alboom, A., de Resende, V.A., De Souza, P.A. Jr., Rodionov, D., Schröder, C., Ming, D.W., Yen, A., Hyperfine Interact. (2006) DOI 10.1007/s10751-006-9329-y
  10. 10.
    Cornell, R.M., Schwertmann, U.: The Iron Oxides. VCH Verlagsgesellschaft mbH, Weinheim, Germany (1996)Google Scholar
  11. 11.
    Clark, B.C., Baird, A.K., Rose, H.J., Toulmin, P. III, Keil, K., Castro, A.J., Kelliher, W.C., Rowe, C.D., Evans, P.H.: Science 194, 1283–1288 (1976)CrossRefADSGoogle Scholar
  12. 12.
    Toulmin, P. III, Baird, A.K., Clark, B.C., Keil, K., Rose, H.J. Jr., Christian, R.P., Evans, P.H., Kelliher, W.C.: J. Geophys. Res. 84, 4625–4634 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G., McSween, H.Y. Jr.: Science 278, 1771–1774 (1997)CrossRefADSGoogle Scholar
  14. 14.
    Rieder, R., Gellert, R., Brückner, J., Klingelhöfer, G., Dreibus, G., Yen, A., Squyres, S.W.: J. Geophys. Res. 108(E12), 8066 (2003) DOI 10.1029/2003JE002150 CrossRefGoogle Scholar
  15. 15.
    Gellert, R., Rieder, R., Anderson, R.C., Brückner, J., Clark, B.C., Dreibus, G., Economou, T., Klingelhöfer, G., Lugmair, G.W., Ming, D.W., Squyres, S.W., d’Uston, C., Wänke, H., Yen, A., Zipfel, J.: Science 305, 829–832 (2004)CrossRefADSGoogle Scholar
  16. 16.
    Gellert, R., Rieder, R., Brückner, J., Clark, B.C., Dreibus, G., Klingelhöfer, G., Lugmair, G.W., Ming, D.W., Wänke, H., Yen, A., Zipfel, J., Squyres, S.W.: J. Geophys. Res. 111, (2006) E02S05, DOI 10.1029/2005JE002555
  17. 17.
    Schröder, C., Klingelhöfer, G., Tremel, W.: Planet. Space Sci. 52(11), 997–1010 (2004) DOI 10.016/j.pss.2004.07.018 CrossRefADSGoogle Scholar
  18. 18.
    Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza, P.A. Jr., Fleischer, I., Wdowiak, T., Gellert, R., Bernhardt, B., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Renz, F., Squyres, S.W., Arvidson, R.E.: J. Geophys. Res. 111, (2006) E02S13, DOI 10.1029/2005JE002584
  19. 19.
    Klingelhöfer, G., Fegley, B. Jr., Morris, R.V., Kankeleit, E., Held, P., Evlanov, E., Priloutskii, O.: Planet. Space Sci. 44, 1277–1288 (1996)CrossRefADSGoogle Scholar
  20. 20.
    Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., Bell, J.F. III, Calvin, W., Christensen, P.R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E., Johnson, J.R., Klingelhöfer, G., Knoll, A.H., McLennan, S.M., McSween, H.Y., Morris, R.V., Rice, J.W., Rieder, R., Soderblom, L.A.: Science 306, 1709–1714 (2004)CrossRefADSGoogle Scholar
  21. 21.
    Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., De Souza, P.A. Jr., Wdowiak, T., Fleischer, I., Gellert, R., Bernhardt, B., Bonnes, U., Cohen, B.A., Evlanov, E.N., Foh, J., Gütlich, P., Kankeleit, E., McCoy, T., Mittlefehldt, D.W., Renz, F., Schmidt, M.E., Zubkov, B., Squyres, S.W., Arvidson, R.E.: J. Geophys. Res. 112, (2007) DOI 10.1029/2006JE002791

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • G. Klingelhöfer
    • 1
  • R. V. Morris
    • 2
  • P. A. De SouzaJr.
    • 3
  • D. Rodionov
    • 1
  • C. Schröder
    • 1
  1. 1.Institut Inorganic and Analytical ChemistryJohannes Gutenberg-University MainzMainzGermany
  2. 2.NASA Johnson Space CenterHoustonUSA
  3. 3.CVRDRio de JaneiroBrazil

Personalised recommendations