Advertisement

Hyperfine Interactions

, Volume 171, Issue 1–3, pp 83–91 | Cite as

Penning trap mass spectrometry for nuclear structure studies

  • Klaus Blaum
  • Dietrich Beck
  • Martin Breitenfeldt
  • Sebastian George
  • Frank Herfurth
  • Alexander Herlert
  • Alban Kellerbauer
  • H.-Jürgen Kluge
  • David Lunney
  • Romain Savreux
  • Stefan Schwarz
  • Lutz Schweikhard
  • Chabouh Yazidjian
Article

Abstract

High-precision mass measurements as performed at the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN are an important contribution to the investigation of nuclear structure. Precise nuclear masses with less than 0.1 ppm relative mass uncertainty allow stringent tests of mass models and formulae that are used to predict mass values of nuclides far from the valley of stability. Furthermore, an investigation of nuclear structure effects like shell or sub-shell closures, deformations, and halos is possible. In addition to a sophisticated experimental setup for precise mass measurements, a radioactive ion-beam facility that delivers a large variety of short-lived nuclides with sufficient yield is required. An overview of the results from the mass spectrometer ISOLTRAP is given and its limits and possibilities are described.

Key words

ISOLTRAP mass spectrometry nuclear structure Penning trap short-lived nuclides 

PACS

7.75.+h Mass spectrometers 21.10.Dr Binding energies and masses 32.10.Bi Atomic masses mass spectra abundances isotopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaum, K.: Phys. Rep. 425, 1 (2006)CrossRefADSGoogle Scholar
  2. 2.
    Lunney, D., Pearson, J.M., Thibault, C.: Rev. Mod. Phys. 75, 1021 (2003)CrossRefADSGoogle Scholar
  3. 3.
    Ames, F., et al.: Nucl. Phys. A. 651, 3 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Beck, D., et al.: Eur. Phys. J. A. 8, 307 (2000)CrossRefADSGoogle Scholar
  5. 5.
    Schwarz, S., et al.: Nucl. Phys., A. 693, 533 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Rinta-Antila, S., et al.: Phys. Rev. C 70, 011301(R) (2004)CrossRefADSGoogle Scholar
  7. 7.
    Litvinov, Yu. A., et al.: Nucl. Phys., A. 756, 3 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Bollen, G., et al.: Phys. Rev. C. 46, R2140 (1992)CrossRefADSGoogle Scholar
  9. 9.
    Litvinov, Yu. A., et al.: Nucl. Phys., A. 734, 473 (2004)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Blaum, K., et al.: Europhys. Lett. 67, 586 (2004)CrossRefADSGoogle Scholar
  11. 11.
    Van Roosbroeck, J., et al.: Phys. Rev. Lett. 92, 112501 (2004)CrossRefADSGoogle Scholar
  12. 12.
    Weber, C., et al.: Phys. Lett. A. 347, 81 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Otten, E.W.: In: Allan Bromley, D. (ed.) Treatise on heavy-ion science, 8, vol. 515. Plenum Press, New York (1989)Google Scholar
  14. 14.
    Andreyev, A.N., et al.: Nature 405, 430 (2000)CrossRefADSGoogle Scholar
  15. 15.
    Kluge, H.-J., Nörtershäuser, W.: Spectrochim. Acta B. 58, 1031 (2003)CrossRefADSGoogle Scholar
  16. 16.
    Schweikhard, L., Bollen, G.: A special Issue on Ultra-accurate mass determination and related topics. Int. J. Mass Spectrom. 251, (2006)Google Scholar
  17. 17.
    Audi, G., Wapstra, A.H., Thibault, C.: Nucl. Phys., A. 729, 337 (2003)CrossRefADSGoogle Scholar
  18. 18.
    Kugler, E.: Hyperfine Interact. 129, 23 (2000)CrossRefADSGoogle Scholar
  19. 19.
    Herfurth, F., et al.: Nucl. Instrum. Meth. A. 469, 254 (2001)CrossRefADSGoogle Scholar
  20. 20.
    Savard, G., et al.: Phys. Lett. A. 158, 247 (1991)CrossRefADSGoogle Scholar
  21. 21.
    Raimbault-Hartmann, H., et al.: Nucl. Instrum. Meth. B. 126, 378 (1997)CrossRefGoogle Scholar
  22. 22.
    Blaum, K., et al.: J. Phys. B: At. Mol. Opt. Phys. 36, 921 (2003)CrossRefADSGoogle Scholar
  23. 23.
    Gräff, G., Kalinowsky, H., Traut, J.: Z. Phys. A. 297, 35 (1980)CrossRefGoogle Scholar
  24. 24.
    Bollen, G., et al.: Nucl. Instrum. Meth. A. 368, 675 (1996)CrossRefADSGoogle Scholar
  25. 25.
    Guénaut, C., et al.: J. Phys. G: Nucl. Part. Phys. 31, S1765 (2005)CrossRefGoogle Scholar
  26. 26.
    Guénaut, C., et al.: Eur. Phys. J. A. 25, 33 (2005)CrossRefADSGoogle Scholar
  27. 27.
    Audi, G., et al.: Nucl. Phys., A. 729, 3 (2003)CrossRefADSGoogle Scholar
  28. 28.
    Litvinov, Yu. A., et al.: Hyperfine Interact. 132, 283 (2001)CrossRefADSGoogle Scholar
  29. 29.
    Novikov, Yu. N., et al.: Nucl. Phys., A. 697, 92 (2002)CrossRefADSGoogle Scholar
  30. 30.
    Delahaye, P., et al.: Phys. Rev. C. 74, 034331 (2006)CrossRefADSGoogle Scholar
  31. 31.
    Hager, U., et al.: Phys. Rev. Lett. 96, 042504 (2006)CrossRefADSGoogle Scholar
  32. 32.
    Benenson, W., Kashy, E.: Rev. Mod. Phys 51, 527 (1979)CrossRefADSGoogle Scholar
  33. 33.
    Wigner, E.P.: In: Millikan, W.O. (ed.) Proceedings of the Robert A. Welch Foundation Conference on Chemical Research, Houston, vol. 1. Robert A. Welch Foundation, Houston, (1957)Google Scholar
  34. 34.
    Weinberg, S., Treiman, S.B: Phys. Rev. 116, 465 (1959)CrossRefADSGoogle Scholar
  35. 35.
    Britz, J., Pape, A., Antony, M.: At. Data Nucl. Data Tab. 69, 125 (1998)CrossRefADSGoogle Scholar
  36. 36.
    Herfurth, F., et al.: Phys. Rev. Lett. 87, 142501 (2001)CrossRefADSGoogle Scholar
  37. 37.
    Pyle, M.C., et al.: Phys. Rev. Lett. 88, 122501 (2002)CrossRefADSGoogle Scholar
  38. 38.
    Blaum, K., et al.: Phys. Rev. Lett. 91, 260801 (2003)CrossRefADSGoogle Scholar
  39. 39.
    Blaum, K., et al.: Eur. Phys. J. A. 15, 245 (2002)CrossRefADSGoogle Scholar
  40. 40.
    Blaum, K., et al.: Anal. Bioanal. Chem. 377, 1133 (2003)CrossRefGoogle Scholar
  41. 41.
    Kellerbauer, A., et al.: Eur. Phys. J. D. 22, 53 (2003)CrossRefADSGoogle Scholar
  42. 42.
    Yazidjian, C., et al.: Hyperfine Interactions (2006) (in press)Google Scholar
  43. 43.
    Blaum, K., et, al.: J. Phys. G: Nucl. Part. Phys. 31, S1775 (2005)CrossRefGoogle Scholar
  44. 44.
    Herlert, A., et al.: New. J. Phys. 7, 44 (2005)CrossRefADSGoogle Scholar
  45. 45.
    Kellerbauer, A., et al.: Phys. Rev. Lett. 93, 072502 (2004)CrossRefADSGoogle Scholar
  46. 46.
    George, S., et al.: Int. J. Mass Spectrom. (2006) (submitted)Google Scholar
  47. 47.
    Herlert, A., et al.: Int. J. Mass Spectrom. 251, 131 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Klaus Blaum
    • 1
  • Dietrich Beck
    • 2
  • Martin Breitenfeldt
    • 3
  • Sebastian George
    • 1
  • Frank Herfurth
    • 2
  • Alexander Herlert
    • 4
  • Alban Kellerbauer
    • 5
  • H.-Jürgen Kluge
    • 6
  • David Lunney
    • 7
  • Romain Savreux
    • 2
  • Stefan Schwarz
    • 8
  • Lutz Schweikhard
    • 3
  • Chabouh Yazidjian
    • 2
  1. 1.Johannes Gutenberg-Universität, 55099 Mainz, Germany and GSI DarmstadtDarmstadtGermany
  2. 2.GSI DarmstadtDarmstadtGermany
  3. 3.Ernst-Moritz-Arndt-UniversitätGreifswaldGermany
  4. 4.Physics DepartmentCERNGeneva 23Switzerland
  5. 5.MPI für KernphysikHeidelbergGermany
  6. 6.GSI Darmstadt, 64291 Darmstadt, Germany and Ruprecht-Karls-UniversitätHeidelbergGermany
  7. 7.CSNSM-IN2P3-CNRSOrsayFrance
  8. 8.NSCLMichigan State UniversityEast LansingUSA

Personalised recommendations