Advertisement

Hyperfine Interactions

, Volume 171, Issue 1–3, pp 197–201 | Cite as

Investigation of the low-lying isomer in 229Th by collinear laser spectroscopy

  • B. Tordoff
  • J. Billowes
  • P. Campbell
  • B. Cheal
  • D. H. Forest
  • T. Kessler
  • J. Lee
  • I. D. Moore
  • A. Popov
  • G. Tungate
  • J. Äystö
Article

Abstract

A new ion beam of 229Th is available at the Jyväsklyä IGISOL facility, produced from the α decay of 233U. A small branching ratio (≈ 2%) is believed to populate the inferred low-lying (5.5 eV) isomeric state in 229Th. A laser ionization scheme is currently being developed to improve the yield of 229Th from the source. The ion source uses a novel electric field configuration for fast and efficient extraction of α-recoils and is able to provide beams of short lived (τ≥ 30 ms) radioactive nuclei. Identification of the isomeric state by collinear laser spectroscopy will reduce the lower lifetime limit of the state and provide the first direct evidence for its existence.

Key words

229Th laser ionization collinear laser spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guimaraes-Filho, Z.O., Helene, O.: Phys. Rev. C71, 044303 (2005)ADSGoogle Scholar
  2. 2.
    Kroger, L.A., Reich, C.W.: Nucl. Phys. A259, 29 (1976)ADSGoogle Scholar
  3. 3.
    Burke, D.G., et al.: Phys. Rev. C42, R499 (1990)ADSGoogle Scholar
  4. 4.
    Irwin, G.M., Kim, K.H.: Phys. Rev. Lett. 79, 990 (1997)CrossRefADSGoogle Scholar
  5. 5.
    Utter, S.B., et al.: Phys. Rev. Lett. 82, 505 (1999)CrossRefADSGoogle Scholar
  6. 6.
    Shaw, R.W., et al.: Phys. Rev. Lett. 82, 1109 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Moore, I.D., et al.: ANL Phys. Dev. Rep. PHY-10990-ME-2004 (2004)Google Scholar
  8. 8.
    Kasamatsu, Y., et al.: Radiochim. Acta 93, 511 (2005)CrossRefGoogle Scholar
  9. 9.
    Dykhne, A.M., Tkalya, E.V.: JETP Lett. 67, 251 (1998)CrossRefADSGoogle Scholar
  10. 10.
    Tordoff, B., et al.: Nucl. Instrum. Methods B252, 347 (2006)ADSGoogle Scholar
  11. 11.
    Dykhne, A.M., et al.: Pis’ma Zh. Eksp. Toer. Fiz. 64, 319 (1996)ADSGoogle Scholar
  12. 12.
    Moore, I.D., et al.: J. Phys. G: Nucl. Part. Phys. 31, S1499 (2005)CrossRefGoogle Scholar
  13. 13.
    Kessler, T., et al.: to be publishedGoogle Scholar
  14. 14.
    Billowes, J.: Nucl. Phys. A682, 206c (2001)ADSGoogle Scholar
  15. 15.
    Kälber, W., et al.: Z. Phys. A334, 103 (1989)Google Scholar
  16. 16.
    Myers, W.D., Schmidt, K.H.: Nucl. Phys. A410, 61 (1983)ADSGoogle Scholar
  17. 17.
    Campbell, P.: Optical pumping in an RF cooler buncher (this issue)Google Scholar
  18. 18.
    Karpeshin, F.F., et al.: Phys. Lett. B372, 1 (1996)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • B. Tordoff
    • 1
  • J. Billowes
    • 1
  • P. Campbell
    • 1
  • B. Cheal
    • 1
  • D. H. Forest
    • 2
  • T. Kessler
    • 3
  • J. Lee
    • 4
  • I. D. Moore
    • 3
  • A. Popov
    • 5
  • G. Tungate
    • 2
  • J. Äystö
    • 3
  1. 1.Department of Physics and AstronomyManchester UniversityManchesterUK
  2. 2.School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  3. 3.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  4. 4.Department of PhysicsMcGill UniversityMontréalCanada
  5. 5.Petersburg Nuclear Physics InstituteGatchinaRussia

Personalised recommendations