Hyperfine Interactions

, Volume 169, Issue 1–3, pp 1279–1283 | Cite as

Determination of Lamb–Mössbauer factors and lattice dynamics in some nitroprusside single crystals

  • V. Rusanov
  • S. Stankov
  • V. Gushterov
  • L. Tsankov
  • A. X. Trautwein


Mössbauer spectra have been recorded for sodium, guanidinium, barium and lithium nitroprussides single crystal cuts. The temperature dependence of the Lamb–Mössbauer fraction f, respectively, the mean-square nuclear displacement 〈x 2〉 and the mean-square (of the total) velocity of the iron nucleus 〈v 2〉 were analyzed on the basis of the Debye and Einstein lattice-vibration models. The characteristic temperatures of the two models, θ D and θ E, fitted to 〈x 2〉 are considerably lower than those fitted to 〈v 2〉. This effect seems to be typical for the iron complexes and was explained with the presence of low and high frequencies in the phonon vibration spectra and of low-temperature anharmonicity. The Lamb–Mössbauer fraction at 77 K in all principal crystal directions of sodium, guanidinium and barium nitroprussides has been determined. These values will be used for more precise studies of the population and the properties of the light-induced molecular states of the nitrosyl [Fe(CN)5NO]2− anion.

Key words

nitroprusside single crystals Lamb–Mössbauer factors lattice dynamics Debye and Einstein characteristic temperatures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Alexander von Humboldt Foundation, the special program Stability Pact for South Eastern Europe (Rusanov, V.) and the German Academy Exchange Office, DAAD (Stankov, S.) for the provided Research Fellowship Grants.


  1. 1.
    Hauser U., Oestreich V., Rohrweck H.D.: Z. Phys. A 280, 17 (1977)CrossRefGoogle Scholar
  2. 2.
    Carducci M.D., Pressprich M.R., Coppens P.: J. Am. Chem. Soc. 119, 2669 (1997)CrossRefGoogle Scholar
  3. 3.
    Schaniel D., Schefer J., Imlau M., Woike T.: Phys. Rev., B 68, 104108 (2003)CrossRefADSGoogle Scholar
  4. 4.
    Rusanov V., Stankov S., Trautwein A.X.: Hyperfine Interact. 144/145, 307 (2002)CrossRefADSGoogle Scholar
  5. 5.
    Coppens P., Novozhilova I., Kovalevsky A.: Chem. Rev. 102, 861 (2002)CrossRefGoogle Scholar
  6. 6.
    Rusanov V., Stankov S., Angelov V., Koop N., Winkler H., Trautwein A.X.: Nucl. Instrum. Methods, B 207, 205 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Stankov S., Rusanov V., Angelov V., Haussühl S., Trautwein A.X.: Hyperfine Interact. 141/142, 223 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Lafleur L.D., Goodman C.L.: Phys. Rev., B 4, 2915 (1971)CrossRefADSGoogle Scholar
  9. 9.
    Gibb,T.C.: Principles of Mössbauer Spectroscopy, p. 135. Charman and Hall, London (1976)Google Scholar
  10. 10.
    Rusanov V., Angelov V., Angelova J., Bonchev T., Woike T., Kim H., Haussühl S.: J. Solid State Chem. 123, 39 (1996)CrossRefGoogle Scholar
  11. 11.
    Grant R.W., Housley R. M., Gonser U.: Phys. Rev. 178, 523 (1969)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. Rusanov
    • 1
  • S. Stankov
    • 1
  • V. Gushterov
    • 1
  • L. Tsankov
    • 2
  • A. X. Trautwein
    • 3
  1. 1.Department of Atomic Physics, Faculty of PhysicsUniversity of SofiaSofiaBulgaria
  2. 2.Department of Nuclear Engineering, Faculty of PhysicsUniversity of SofiaSofiaBulgaria
  3. 3.Institut für PhysikUniversität zu LübeckLubeckGermany

Personalised recommendations