Hyperfine Interactions

, Volume 165, Issue 1–4, pp 135–140 | Cite as

Mössbauer studies of phosphate glasses for the immobilisation of toxic and nuclear wastes

  • P. A. Bingham
  • S. D. Forder
  • R. J. Hand
  • A. Lavaysierre
Article

Abstract

Various iron-containing phosphate glasses were investigated by Mössbauer spectroscopy. Iron was found to occur predominantly as Fe3+ in all glasses, and largely occupied sites with distorted octahedral coordination for both redox states. Using a base glass of nominal composition 60 P2O5–40 Fe2O3 (mol%), stepwise molar replacement of Fe2O3 by (0.67 Na2O × 0.33 Al2O3) increased the redox ratio, Fe2+/ΣFe, from 0.13 at 40% Fe2O3 to 0.25 at 10% Fe2O3. The centre shift increased and quadrupole splitting decreased by up to ∼20% over this range, interpreted as a decrease in the average distortion of Fe sites from cubic symmetry, and an increase in average iron coordination. Literature revealed that recoil-free fraction ratio f (Fe3+) / f (Fe2+) ≈ 1.3 in iron phosphate glasses, and this was considered when assessing redox. Mössbauer parameters of these and other glasses demonstrated a combination of structural stability and compositional flexibility which makes them so suitable for waste immobilisation.

Key words

Mössbauer glass phosphate iron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pegg, I.L., Joseph, I.: In: Oh, C.H. (ed.) Hazardous and Radioactive Waste Treatment Technologies Handbook, p. 4.2.1. CRC, London (2001)Google Scholar
  2. 2.
    Kushnikov, V.V., Matyunin, Y.I., Smelova, T.V., Demin, A.V.: Mater. Res. Soc. Symp. Proc. 465, 55 (1997)Google Scholar
  3. 3.
    Yu, X., Day, D.E., Long, G.J., Brow, R.K.: J. Non-Cryst. Solids 215, 21 (1997)CrossRefGoogle Scholar
  4. 4.
    Marasinghe, G.K., Karabulut, M., Ray, C.S., Day, D.E., Allen, P.G., Bucher, J.J., Edelstein, N.M., Shuh, D.K., Badyal, Y.S., Saboungi, M.L., Grimsditch, M., Shastri, S.D., Haeffner, D.: Ceram. Trans. 93, 195 (1999)Google Scholar
  5. 5.
    Bingham, P.A., Hand, R.J., Forder, S.D., Lavaysierre, A., Kilcoyne, S.H., Yasin, I.: Mater. Lett. 60, 844 (2005)CrossRefGoogle Scholar
  6. 6.
    Itoh, H., Inamura, T., Wakabayashi, H., Toriyama, T., Iijima, H.: Proc. ICAME-95, 445 (1996)Google Scholar
  7. 7.
    Takahashi, T., Inamura, T., Toriyama, T., Ijima, H.: Nucl. Instrum. Methods Phys. Res. B76, 103 (1993)ADSGoogle Scholar
  8. 8.
    Nishida, T., Shotsuki, T., Takashima, Y.: J. Non-Cryst. Solids 43, 115 (1981)CrossRefGoogle Scholar
  9. 9.
    Lagarec, K., Rancourt, D.G.: Recoil: Mössbauer spectral analysis software for windows, http://www.isapps.ca/recoil/ (1998)

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • P. A. Bingham
    • 1
  • S. D. Forder
    • 2
  • R. J. Hand
    • 1
  • A. Lavaysierre
    • 2
  1. 1.Immobilisation Science Laboratory, Department of Engineering MaterialsUniversity of SheffieldSheffieldUK
  2. 2.Materials and Engineering Research InstituteSheffield Hallam UniversitySheffieldUK

Personalised recommendations