Advertisement

Hyperfine Interactions

, Volume 162, Issue 1–4, pp 173–179 | Cite as

Laser Ionization and Penning Trap Mass Spectrometry – A Fruitful Combination for Isomer Separation and High-precision Mass Measurements

  • K. BlaumEmail author
  • D. Beck
  • G. Bollen
  • P. Delahaye
  • C. Guénaut
  • F. Herfurth
  • A. Kellerbauer
  • H.-J. Kluge
  • U. Köster
  • D. Lunney
  • S. Schwarz
  • L. Schweikhard
  • C. Yazidjian
Article

Abstract

We have demonstrated for the first time that element-selective laser ionization in combination with ultra-high resolution mass spectrometry can be used to prepare isomerically pure ion ensembles. Together with βγ coincidence studies this method allowed a determination of the low-energy structure and the unambiguous identification of triple β-decaying isomerism in 70Cu. By selective resonant ionization and measurement of the masses of these three states using ISOLTRAP at ISOLDE/CERN with a relative uncertainty of δm/m ≈ 5 ⋅ 10−8 a clear state-to-mass assignment was possible which resolved the assignment puzzle in 70Cu.

Key Words

laser ionization mass spectrometry nuclear isomers nuclear masses penning trap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Audi G., Wapstra A. H. and Thibault C., Nucl. Phys. A 729 (2003), 337.CrossRefADSGoogle Scholar
  2. 2.
    Fedoseyev V. N. et al., Hyperfine Interact. 127 (2000), 409.CrossRefADSGoogle Scholar
  3. 3.
    Bollen G. et al., Nucl. Instr. Methods A 368 (1996), 675.CrossRefADSGoogle Scholar
  4. 4.
    Herfurth F. et al., J. Phys. B 36 (2003), 931.CrossRefADSGoogle Scholar
  5. 5.
    Kellerbauer A., Int. J. Mass Spectrom. 229 (2003), 107.CrossRefGoogle Scholar
  6. 6.
    Kugler E., Hyp. Int. 129 (2000), 23.CrossRefADSGoogle Scholar
  7. 7.
    Van Roosbroeck J. et al., Phys. Rev. Lett. 92 (2004), 112501.CrossRefADSGoogle Scholar
  8. 8.
    Köster U. et al., Spectrochim. Acta B 58 (2003), 1047.CrossRefGoogle Scholar
  9. 9.
    Köster U. et al., Nucl. Instr. Methods B 160 (2000), 528.CrossRefADSGoogle Scholar
  10. 10.
    Weissman L. et al., Phys. Rev. C 65 (2002), 024315.CrossRefADSGoogle Scholar
  11. 11.
    Herfurth F. et al., Nucl. Instr. Methods A 469 (2001), 254.CrossRefADSGoogle Scholar
  12. 12.
    Gräff G., Kalinowsky H. and Traut J., Z. Phys. A 297 (1980), 35.CrossRefGoogle Scholar
  13. 13.
    König M. et al., Int. J. Mass Spectrom. Ion Processes 142 (1995), 95.CrossRefGoogle Scholar
  14. 14.
    Bollen G., Nucl. Phys. A 693 (2001), 3.CrossRefADSGoogle Scholar
  15. 15.
    Kellerbauer A. et al., Eur. Phys. J. D 22 (2003), 53.CrossRefADSGoogle Scholar
  16. 16.
    Blaum K. et al., Nucl. Phys. A 746 (2004), 305c.CrossRefADSGoogle Scholar
  17. 17.
    Van Roosbroeck J. et al., Phys. Rev. C 69 (2004), 034313.CrossRefADSGoogle Scholar
  18. 18.
    Blaum K. et al., Europhys. Lett. 67 (2004), 586.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • K. Blaum
    • 1
    • 2
    Email author
  • D. Beck
    • 2
  • G. Bollen
    • 3
  • P. Delahaye
    • 4
  • C. Guénaut
    • 5
  • F. Herfurth
    • 2
  • A. Kellerbauer
    • 4
  • H.-J. Kluge
    • 2
  • U. Köster
    • 4
  • D. Lunney
    • 5
  • S. Schwarz
    • 3
  • L. Schweikhard
    • 6
  • C. Yazidjian
    • 2
    • 4
  1. 1.Institute of PhysicsJohannes Gutenberg-UniversityMainzGermany
  2. 2.GSI DarmstadtDarmstadtGermany
  3. 3.NSCLMichigan State UniversityEast LansingUSA
  4. 4.Department of PhysicsCERNGeneva 23Switzerland
  5. 5.CSNSM-IN2P3-CNRSOrsay-CampusFrance
  6. 6.Institute of PhysicsErnst-Moritz-Arndt UniversityGreifswaldGermany

Personalised recommendations