Advertisement

Hyperfine Interactions

, Volume 162, Issue 1–4, pp 115–123 | Cite as

Pumping 229m Th by Hollow-Cathode Discharge

  • T. T. Inamura
  • T. Mitsugashira
  • THE Oarai Collaboration
Article

Abstract

An extremely low-lying nuclear isomer in 229Th is still to be established in spite of efforts made since the first postulation of the isomer in 1976. To study such an extremely low-lying nuclear isomer, we have built an entirely new device that is based on the well-established atomic spectroscopic technique: Hollow-cathode discharge. The isomer in question is expected to be populated by the process NEET through atomic excited states if it exists in an energy range of electron volt. After switching off the discharge, we will measure alphas from the isomer, photons from the isomer itself and photons from atomic states to which the isomer is expected to decay by the inverse NEET. Our experiment is under way at Oarai using the world's radiochemically purest 229Th sample.

Key Words

alphas and photons NEET by electric discharge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kroger L. A. and Reich C. W., Nucl. Phys. A 259 (1976), 29.CrossRefADSGoogle Scholar
  2. 2.
    Helmer R. G. and Reich C. W., Phys. Rev. C 49 (1994), 1845.CrossRefADSGoogle Scholar
  3. 3.
    Burke R. G., Garret P. E., Tao Qu and Naumann R. A., Phys. Rev. C 42 (1990), R499.CrossRefADSGoogle Scholar
  4. 4.
    Irwin G. M. and Kim K. H., Phys, Rev. Lett. 79 (1997), 990.CrossRefADSGoogle Scholar
  5. 5.
    Richardson D. S., Denton D. M., Evans D. E., Griffith J. A. R. and Tungate G., Phys. Rev. Lett. 80 (1998), 3206.CrossRefADSGoogle Scholar
  6. 6.
    Utter S. B., Beiersdorfer P., Barnes A., Loughheed R. W., Crepso López-Urrutia J. R., Becker J. A. and Weiss M. S., Phys. Rev. Lett. 82 (1999), 505CrossRefADSGoogle Scholar
  7. 7.
    Shaw R. W., Young J. P., Cooper S. P. and Webb O. F., Phys. Rev. Lett. 82 (1999), 1109.CrossRefADSGoogle Scholar
  8. 8.
    Browne E., Norman E. B., Canaan R. D., Glasgow D. C., Keller J. M. and Young J. P., Phys. Rev. C 62 014311, (2001).Google Scholar
  9. 9.
    Mitsugashira T., Hara H., Ohtsuki T., Yuki H., Takamiya K., Kasamatsu Y., Shinohara A., Kikunaga H., and Nakanishi, T. J., Radioanal. Nucl. Chem. 255 (2003), 63.CrossRefGoogle Scholar
  10. 10.
    Barci V., Ardisson G., Brarci-Funel G., Weiss B., El Samad O. and Sheline R.K., Phys. Rev. C 68 034329, (2003).Google Scholar
  11. 11.
    Arcimowicz B., Chojnacki S. and Inamura T. T., Warsaw University Heavy Ion Laboratory Annual Report 2002 (2003) p. 43.Google Scholar
  12. 12.
    Morita M., Prog. Theor. Phys. 49 (1973), 1574.CrossRefADSGoogle Scholar
  13. 13.
    Karpeshin F. F., Band I. M., Trzhaskovskaya M. B. and Listengarten M. A., Phys. Lett. B 372 (1996), 1.CrossRefADSGoogle Scholar
  14. 14.
    Inamura T. T., Karpeshin F. F. and Trzhaskovskaya M. B., Czech. J. Phys. 53 (2003), B349.Google Scholar
  15. 15.
    Karpeshin F. F., Band I. M. and Trzhaskovskaya M. B., Nucl. Phys. A 654 (1999), 579.CrossRefADSGoogle Scholar
  16. 16.
    Karpeshin F. F., Band I. M., Trzhaskovskaya M. B. and Pastor A., Phys. Rev. Lett. 83 (1999), 1072.CrossRefADSGoogle Scholar
  17. 17.
    Valero F. P. J., J. Opt. Soc. Am. 58 (1968), 484; 58 (1968), 1048.ADSCrossRefGoogle Scholar
  18. 18.
    H. Kikunaga, Doctoral thesis at Kanazawa University, to be published.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • T. T. Inamura
    • 1
  • T. Mitsugashira
    • 2
  • THE Oarai Collaboration
  1. 1.Accelerator Research FacilityRIKENWako-shiJapan
  2. 2.Oarai branch, Institute for Materials ResearchTohoku UniversityOarai-machiJapan

Personalised recommendations