Hyperfine Interactions

, Volume 158, Issue 1–4, pp 353–359

Experimental Verification of Calculated Lattice Relaxations Around Impurities in CdTE

  • H.-E. Mahnke
  • H. Haas
  • V. Koteski
  • N. Novakovic
  • P. Fochuk
  • O. Panchuk
HFI Probes in Semiconductors, Metals and Insulators

Abstract

We have measured the lattice distortion around As (acceptor) and Br (donor) in CdTe with fluorescence detected X-ray absorption spectroscopy. We could experimentally verify the lattice relaxation with a bond length reduction of 8% around the As atom as inferred indirectly from ab initio calculations of the electric field gradient performed with the WIEN97 package in comparison with the measured value in a Perturbed Angular Correlation experiment as recently reported. We have complemented our own calculations of relaxation with WIEN97 with calculations using the FHI96md pseudo-potential program, which allows the use of larger super-cell sizes. Encouraged by the good agreement between experiment and model calculation for As in CdTe as well as similarly for the isovalent Se in CdTe, we extended our investigation to Br in CdTe, where the electric field gradient has also been measured, and could not only verify the derived lattice expansion around Br with our EXAFS analysis but additionally observe fractions of Br in the A-center as well as in a DX-center configuration.

Key Words

calculations with DFT theories with LAPW and pseudo-potential methods dopants in CdTe fluorescence detected X-ray absorption lattice relaxation local structure 

PACS codes

61.72.-y 61.72.Vv 61.10.Ht 71.15.Ap 71.15.Mb 71.55.Gs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lany S. et al., Phys. Rev., B 62 (2000), R2259.CrossRefADSGoogle Scholar
  2. 2.
    Ostheimer V. et al., Phys. Rev., B 68 (2003), 235206.CrossRefADSGoogle Scholar
  3. 3.
    Lany S., Elektronische und strukturelle Eigenschaften von Punktdefekten in II-VI Halbleitern, PhD thesis, Universität des Saarlandes, Saarbrücken, Shaker, Aachen, 2003 ISBN 3-8322-1302-3.Google Scholar
  4. 4.
    Stadler W. et al., Phys. Rev., B 51 (1995), 10619.CrossRefADSGoogle Scholar
  5. 5.
    Park C. H. and Chadi D. J., Phys. Rev., B 52 (1995), 11884.CrossRefADSGoogle Scholar
  6. 6.
    Lany S. et al., Physica, B 302–303 (2001), 114 and ref. therein.CrossRefGoogle Scholar
  7. 7.
    Rehr J. J., Mustre de Leon J., Zabinsky S. I. and Albers R. C., J. Am. Chem. Soc. 113 (1991), 5135.CrossRefGoogle Scholar
  8. 8.
    Stern E. A., Newville M., Ravel B., Yacoby Y. and Haskel D., Physica, B 208 & 209 (1995), 117.CrossRefGoogle Scholar
  9. 9.
    Newville M., Livins P., Yacoby Y., Rehr J. J. and Stern E. A., Phys. Rev., B 47 (1993), 14126.CrossRefADSGoogle Scholar
  10. 10.
    Blaha P., Schwarz K. and Luitz J., WIEN97, A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties, Karlheinz Schwarz, TU Wien, Austria, 1999, ISBN 3-9501031-0-4.Google Scholar
  11. 11.
    Bockstedte M., Kley A., Neugebauer J. and Scheffler M., Comput. Phys. Comm. 107 (1997), 187.MATHCrossRefADSGoogle Scholar
  12. 12.
    Koteski V., Ivanovic N., Haas H., Holub-Krappe E. and Mahnke H.-E., NIM, B 200 (2003), 60.CrossRefADSGoogle Scholar
  13. 13.
    Koteski V., Haas H., Holub-Krappe E., Ivanovic N., Mahnke H.-E., Phys. Scr. T115 (2005), 369.CrossRefGoogle Scholar
  14. 14.
    Mahnke H.-E., Haas H., Holub-Krappe E., Koteski V., Novakovic N., Fochuk P. and Panchuk O., Thin Solid Films 480481 (2005), 279.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • H.-E. Mahnke
    • 1
  • H. Haas
    • 1
  • V. Koteski
    • 1
    • 2
  • N. Novakovic
    • 1
    • 2
  • P. Fochuk
    • 3
  • O. Panchuk
    • 3
  1. 1.Hahn-Meitner-Institut Berlin GmbHBereich StrukturforschungBerlinGermany
  2. 2.VINĈABelgradeSerbia and Montenegro
  3. 3.University of ChernivtsiChernivtsiUkraine

Personalised recommendations