Hyperfine Interactions

, Volume 158, Issue 1–4, pp 59–62 | Cite as

Hyperfine Fields of Light Interstitial Impurities in Ni

  • C. Zecha
  • H. Ebert
  • H. Akai
  • P. H. Dederichs
  • R. Zeller
Theory Hyperfine Interactions

Abstract

The magnetic hyperfine interaction of light interstitial impurities in Ni have been studied by means of the Korringa–Kohn–Rostoker (KKR) band structure method. This method allows to deal with the impurity problem by solving the corresponding Dyson equation for the Green’s function. It also allows to account for lattice relaxations. For this purpose a new technique was developed that allows to handle in principle arbitrary lattice distortions. Corresponding calculations have been performed for the magnetic hyperfine fields of the light interstitial impurities H to Ne in Ni. By minimising the force on the nearest neighbour host atoms their equilibrium position was determined. The resulting hyperfine fields for the equilibrium configuration are found to be in rather good agreement with available experimental data.

Key Words

ferromagnets hyperfine field interstitial impurities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akai H., Akai M. and Kanamori J., Electronic structure of impurities in ferromagnetic iron. II. 3d and 4d impurities, J. Phys. Soc. Jpn. 54 (1985), 4257.CrossRefADSGoogle Scholar
  2. 2.
    Akai M., Akai H. and Kanamori J., Electronic structure of impurities in ferromagnetic iron. III. Light interstitials, J. Phys. Soc. Jpn. 56 (1987), 1064.CrossRefADSGoogle Scholar
  3. 3.
    Blügel S., Akai H., Zeller R. and Dederichs P. H., Hyperfine fields of 3d and 4d impurities in nickel, Phys. Rev. B 35 (1987), 3271.CrossRefADSGoogle Scholar
  4. 4.
    Daniel E. and Friedel J., Sur la polarisation de spin des electrons de conductibilite dans les metaux ferromagnetiques, J. Phys. Chem. Solids 24 (1963), 1601.CrossRefADSGoogle Scholar
  5. 5.
    Dederichs P. H., Zeller R., Akai H., Blügel S. and Oswald A., Ab initio calculations for impurities in Cu and Ni, Phil. Mag. B 51 (1985), 137.CrossRefGoogle Scholar
  6. 6.
    Katayama-Yoshida H., Terakura K. and Kanamori J., A calculation of the electronic structure of an interstitial and a substitutional impurity atom of boron in ferromagnetic nickel, J. Phys. Soc. Jpn. 46 (1979), 822.CrossRefADSGoogle Scholar
  7. 7.
    Katayama-Yoshida H., Terakura K. and Kanamori J., Systematic variation of hyperfine field and relaxation time of impurity nuclei in ferromagnetic nickel. II. Case of light nuclei, J. Phys. Soc. Jpn. 49 (1980), 972.CrossRefADSGoogle Scholar
  8. 8.
    Korhonen T., Settels A., Papanikolaou N., Zeller R. and Dederichs P. H., Lattice relaxations and hyperfine fields of heavy impurities in Fe, Phys. Rev. B 62 (2000), 452.CrossRefADSGoogle Scholar
  9. 9.
    Seewald G., Hagn E., Zech E., Kleyna R., Voß M. and Burchard A., Spin–orbit induced noncubic charge distribution in cubic ferromagnets. I. Electric field gradient measurements on 5d impurities in Fe and Ni, Phys. Rev. B 66 (2002), 174401.CrossRefADSGoogle Scholar
  10. 10.
    Vosko S. H., Wilk L. and Nusair M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. 58 (1980), 1200.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • C. Zecha
    • 1
  • H. Ebert
    • 1
  • H. Akai
    • 2
  • P. H. Dederichs
    • 3
  • R. Zeller
    • 3
  1. 1.Depatment of ChemistryUniversity of MunichMünchenGermany
  2. 2.Osaka UniversityOsakaJapan
  3. 3.Institute für Festkörperforschung, Forschungszentrum JülichJülichGermany

Personalised recommendations