Hyperfine Interactions

, Volume 163, Issue 1–4, pp 73–88

Mössbauer Spectra of Noninteracting Single-Domain Ferromagnetic Particles Including Superparamagnetic Relaxation: Simplification of the Multilevel Method

  • P. M. Déjardin
  • W. T. Coffey
Article

Abstract

A simple method of calculation of Mössbauer relaxation spectra of single-domain ferromagnetic particle assemblies is developed from Brown's model of coherent rotation of the magnetization utilizing matrix continued fractions to compute the lineshape. The method allows one to obtain a simple analytical formula for the lineshape in the strong relaxation limit, which provides results in agreement with numerical calculations and radically simplifies analysis of the spectra.

Keywords

Mössbauer relaxation spectra superparamagnetic relaxation single-domain ferromagnetic particles multilevel method matrix continued fraction method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dormann, J. L., Fiorani, D. and Tronc, E., Adv. Chem. Phys. 98 (1997), 283. Google Scholar
  2. 2.
    Néel, L., Ann. Géophys. 5 (1949), 99. Google Scholar
  3. 3.
    Brown Jr., W. F., Phys. Rev. 130 (1963), 1677. CrossRefADSGoogle Scholar
  4. 4.
    Rancourt, D. G., Rev. Min. Geochem. 44 (2001), 217. CrossRefGoogle Scholar
  5. 5.
    Blume, M., Phys. Rev. 174 (1968), 351. CrossRefADSGoogle Scholar
  6. 6.
    Anderson, P. W., J. Phys. Soc. Japan 9 (1954), 315. ADSGoogle Scholar
  7. 7.
    Sack, R. A., Mol. Phys. 1 (1958), 163. MATHCrossRefADSGoogle Scholar
  8. 8.
    Clauser, M. J. and Blume, M., Phys. Rev. B 3 (1971), 583. CrossRefADSGoogle Scholar
  9. 9.
    Dattagupta, S. and Blume, M., Phys. Rev. B 10 (1974), 4540. CrossRefADSGoogle Scholar
  10. 10.
    Jones, D. H. and Srivastava, K. K. P., Phys. Rev. B 34 (1986), 7542. CrossRefADSGoogle Scholar
  11. 11.
    van Lierop, J. and Ryan, D. H., Phys. Rev. B 63 (2001), 064406. CrossRefADSGoogle Scholar
  12. 12.
    Pfannes, H. D., Mijovilovic, A., Magalhães-Paniago, R. and Paniago, R., Phys. Rev. B 62 (2000), 3372. CrossRefADSGoogle Scholar
  13. 13.
    Pfannes, H. D., Dias Filho, J. H., Paniago, R. and Hyp. Interact. 148/149 (2003), 243. CrossRefADSGoogle Scholar
  14. 14.
    Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, Dover, New York, 1964. MATHGoogle Scholar
  15. 15.
    Coffey, W. T., Kalmykov, Yu. P. and Waldron, J. T., The Langevin Equation, World Scientific, Singapore, 1996. MATHGoogle Scholar
  16. 16.
    Kramers, H. A., Physica 7 (1940), 284. MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Raikher, Yu. L. and Stepanov, V. I., Phys. Rev. B 66 (2002), 214406. CrossRefADSGoogle Scholar
  18. 18.
    Mørup, S., J. Magn. Magnet. Mat. 37 (1983), 39. CrossRefADSGoogle Scholar
  19. 19.
    Coffey, W. T., Cregg, P. J., Crothers, D. S. F., Waldron, J. T. and Wickstead, A. W., J. Magn. Magn. Mat. 131 (1994), L301. CrossRefADSGoogle Scholar
  20. 20.
    Wickmann, H. H., Klein, M. P. and Shirley, D. A., Phys. Rev. 152 (1966), 345. CrossRefADSGoogle Scholar
  21. 21.
    Déjardin, P. M., unpublished work, 2002. Google Scholar
  22. 22.
    Rancourt, D. G. and Daniels, J. M., Phys. Rev. B 29 (1984), 2410. CrossRefADSGoogle Scholar
  23. 23.
    Bødker, F., Mørup, S. and Linderoth, S., Phys. Rev. Lett. 72 (1994), 282. CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • P. M. Déjardin
    • 1
  • W. T. Coffey
    • 2
  1. 1.Lab. de Mathématiques et Physique pour les Systémes, Groupe de Physique MoléculaireUniversité de PerpignanPerpignan CedexFrance
  2. 2.Department of Electronics and Electrical EngineeringTrinity CollegeDublin 2Ireland

Personalised recommendations