Reproductive dynamics of a native brook trout population following removal of non-native brown trout from a stream in Minnesota, north-central USA

  • Loren M. MillerEmail author
  • Douglas J. Dieterman
  • R. John H. Hoxmeier


Manual removal of non-native brown trout (Salmo trutta) led to increased abundance and improved size structure of a native brook trout (Salvelinus fontinalis) population. Reproductive dynamics of brook trout in response to release from this competitor were quantified using 14 microsatellite DNA loci to estimate effective population sizes, family sizes, and parentage across five cohorts. We hypothesized that brown trout removal allowed more brook trout to reproduce and distribute reproductive success more evenly among individuals, thereby increasing generational effective population size (Ne) and cohort effective number of breeders (Nb). However, \({\hat{N}}_{\text{e}}\) varied little (27–32), but was estimated for only one generation before and after removals began. Similarly, \({\hat{N}}_{\text{b}}\) differed little between pre-removal (21–25) and post-removal (19–23) cohorts, because increased numbers of reproductively successful adults were offset by highly skewed family sizes. Variance in family size increased following brown trout removal, but was uncorrelated with brook trout abundance across all years. Although most individuals matured at a small size, reproductive success increased with length. Increased abundance of adult brook trout has not increased \({\hat{N}}_{\text{b}}\) and \({\hat{N}}_{\text{e}}\) remains low. Managers should consider moving adults from nearby populations to increase genetic diversity of this isolated population.


Genetics Effective population size Effective number of breeders Reproductive success Genetic diversity Microsatellite DNA Salvelinus fontinalis 



We would like to thank R. Bearbower, R. Binder, D. Casper, S. Erickson, S. Klotz, B. Lee, J. Melander, M. Konsti, J. Roloff, J. Schulz, V. Snook, D. Spence, and J. Weiss of the Minnesota Department of Natural Resources for their help in the field. We thank Jacob Hennig, Reid Swanson and Neal Wehrwein of the University of Minnesota for assistance with genetic sample processing. David Staples assisted with statistics and C. Anderson provided helpful reviews of this manuscript. This project was funded in part by the Federal Aid in Sport Fish Restoration Program (Project F-26-R).

Supplementary material

10750_2019_3952_MOESM1_ESM.pdf (270 kb)
Online Resource 1 (PDF 270 kb)
10750_2019_3952_MOESM2_ESM.pdf (205 kb)
Online Resource 2 (PDF 204 kb)
10750_2019_3952_MOESM3_ESM.xlsx (172 kb)
Online Resource 3 (XLSX 172 kb)
10750_2019_3952_MOESM4_ESM.pdf (291 kb)
Online Resource 4 (PDF 291 kb)


  1. Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 717–723.Google Scholar
  2. Angers, B. & L. Bernatchez, 1996. Usefulness of heterologous microsatellites obtained from brook charr, Salvelinus fontinalis Mitchill, in all Salvelinus species. Molecular Ecology 5: 317–319.CrossRefGoogle Scholar
  3. Ardren, W. R. & A. R. Kapuscinski, 2003. Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Molecular Ecology 12: 35–49.CrossRefGoogle Scholar
  4. Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.CrossRefGoogle Scholar
  5. Blanchfield, P. J. & M. S. Ridgway, 1999. The cost of peripheral males in a brook trout mating system. Animal Behaviour 57: 537–544.CrossRefGoogle Scholar
  6. Blanchfield, P. J., M. S. Ridgway & C. C. Wilson, 2003. Breeding success of male brook trout (Salvelinus fontinalis) in the wild. Molecular Ecology 12: 2417–2428.CrossRefGoogle Scholar
  7. Burnham, K. P. & D. R. Anderson, 2002. Model selection and multimodel inference. Springer-Verlag, New York.Google Scholar
  8. Charlier, J., L. Laikre & N. Ryman, 2012. Genetic monitoring reveals temporal stability over 30 years in a small, lake-resident brown trout population. Heredity 109: 246–253.CrossRefGoogle Scholar
  9. Christie, M. R., M. L. Marine, R. A. French, R. S. Waples & M. S. Blouin, 2012. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109: 254–260.CrossRefGoogle Scholar
  10. Cooper, A. M., L. M. Miller & A. R. Kapuscinski, 2009. Conservation of population structure and genetic diversity under captive breeding of remnant coaster brook trout (Salvelinus fontinalis) populations. Conservation Genetics 11: 1087–1093.CrossRefGoogle Scholar
  11. Do, C., R. S. Waples, D. Peel, G. M. Macbeth, B. J. Tillett & J. R. Ovenden, 2014. NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources 14: 209–214.CrossRefGoogle Scholar
  12. Essington, T. E., P. W. Sorensen & D. G. Paron, 1998. High rate of redd superimposition by brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) in a Minnesota stream cannot be explained by habitat availability alone. Canadian Journal of Fisheries and Aquatic Sciences 55: 2310–2316.CrossRefGoogle Scholar
  13. Fausch, K. D. & R. J. White, 1981. Competition between brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) for positions in a Michigan stream. Canadian Journal of Fisheries and Aquatic Sciences 38: 1220–1227.CrossRefGoogle Scholar
  14. Frankham, R., 1995. Effective population-size adult-population size ratios in wildlife — a review. Genetics Research 66: 95–107.CrossRefGoogle Scholar
  15. Frankham, R., 2015. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology 24: 2610–2618.CrossRefGoogle Scholar
  16. Frankham, R., C. J. A. Bradshaw & B. W. Brook, 2014. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation 170: 56–63.CrossRefGoogle Scholar
  17. Grant, G. C., B. Vondracek & P. W. Sorensen, 2002. Spawning interactions between sympatric brown and brook trout may contribute to species replacement. Transactions of the American Fisheries Society 131: 569–576.CrossRefGoogle Scholar
  18. Hasegawa, K., 2017. Displacement of native white-spotted charr Salvelinus leucomaenis by non-native brown trout Salmo trutta after resolution of habitat fragmentation by a migration barrier. Journal of Fish Biology 90: 2475–2479.CrossRefGoogle Scholar
  19. Hedrick, P. W. & R. Fredrickson, 2010. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics 11: 615–626.CrossRefGoogle Scholar
  20. Hedrick, P. W. & A. Garcia-Dorado, 2016. Understanding inbreeding depression, purging, and genetic rescue. Trends in Ecology & Evolution 31: 940–952.CrossRefGoogle Scholar
  21. Hoxmeier, R. J. H. & D. J. Dieterman, 2013. Seasonal movement, growth, and survival of brook trout in sympatry with brown trout in Midwestern US streams. Ecology of Freshwater Fishes 22: 530–542.CrossRefGoogle Scholar
  22. Hoxmeier, R. J. H. & D. J. Dieterman, 2016. Long-term population demographics of native brook trout following manipulative reduction of an invader. Biological Invasions 18: 2911–2922.CrossRefGoogle Scholar
  23. Hoxmeier, R. J. H., D. J. Dieterman & L. M. Miller, 2015. Brook Trout distribution, genetics, and population characteristics in the Driftless Area of Minnesota. North American Journal of Fisheries Management 35: 632–648.CrossRefGoogle Scholar
  24. Jones, O. R. & J. Wang, 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources 10: 551–555.CrossRefGoogle Scholar
  25. Kalinowski, S. T., 2005. HP-RARE1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5: 187–189.CrossRefGoogle Scholar
  26. Kanno, Y., J. C. Vokoun & B. H. Letcher, 2011. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Molecular Ecology 20: 3711–3729.CrossRefGoogle Scholar
  27. Kanno, Y., M. A. Kulp & S. E. Moore, 2016. Recovery of Native Brook Trout populations following the eradication of nonnative Rainbow Trout in southern Appalachian Mountains streams. North American Journal of Fisheries Management 36: 1325–1335.CrossRefGoogle Scholar
  28. King, T. L., B. A. Lubinski, M. K. Burnham-Curtis, W. Stott & R. P. Morgan II, 2012. Tools for the management and conservation of genetic diversity in brook trout (Salvelinus fontinalis): tri- and tetranucleotide microsatellite markers for the assessment of genetic diversity, phylogeography, and historical demographics. Conservation Genetic Resources 4: 539–543.CrossRefGoogle Scholar
  29. Kitano, S., 2004. Ecological impacts of rainbow, brown and brook trout in Japanese inland waters. Global Environmental Research 8: 41–50.Google Scholar
  30. Le Cren, E. D., 1951. The length–weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology 20: 201–219.CrossRefGoogle Scholar
  31. Lynch, M. & R. Lande, 1997. The critical effective size for a secure population. Animal Conservation 1: 70–72.CrossRefGoogle Scholar
  32. Meirmans, P. G., 2015. Seven common mistakes in population genetics and how to avoid them. Molecular Ecology Resources 24: 3223–3231.CrossRefGoogle Scholar
  33. Meyer, K. A., J. A. Lamansky Jr. & D. J. Schill, 2006. Evaluation of an unsuccessful brook trout electrofishing removal project in a small Rocky Mountain stream. North American Journal of Fisheries Management 26: 849–860.CrossRefGoogle Scholar
  34. Moore, S. E., B. Ridley & G. L. Larson, 1983. Standing crops of brook trout concurrent with removal of rainbow trout from selected streams in Great Smoky Mountains National Park. North American Journal of Fisheries Management 3: 72–80.CrossRefGoogle Scholar
  35. Morrissey, M. B. & M. M. Ferguson, 2009. Marker-assisted determination of the relationship between body size and reproductive success and consequences for evaluation of adaptive life histories. Molecular Ecology 18: 4330–4340.CrossRefGoogle Scholar
  36. Mulder, C. P. H., E. Bazeley-White, P. G. Dimitrakopoulos, A. Hector, M. Scherer-Lorenzen & B. Schmid, 2004. Species evenness and productivity in experimental plant communities. Oikos 107: 50–63.CrossRefGoogle Scholar
  37. Osborne, M. J., S. R. Davenport, C. W. Hoagstrom & T. F. Turner, 2010. Genetic effective size, Ne, tracks density in a small freshwater cyprinid, Pecos bluntnose shiner (Notropis simus pecosensis). Molecular Ecology 19: 2832–2844.CrossRefGoogle Scholar
  38. Palstra, F. P. & D. J. Fraser, 2012. Effective/census population size ratio estimation: a compendium and appraisal. Ecology and Evolution 2: 2357–2365.CrossRefGoogle Scholar
  39. Power, G., 1980. The brook charr, Salvelinus fontinalis. In Balon, E. K. (ed.), Charrs: Salmonid Fishes of the Genus Salvelinus. Dr. W. Junk bv Publishers, The Hague: 141–203.Google Scholar
  40. R Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (URL
  41. Raymond, M. & F. Rousset, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248–249.CrossRefGoogle Scholar
  42. Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.CrossRefGoogle Scholar
  43. Robinson, Z. L., J. A. Coombs, M. Hudy, K. H. Nislow, B. H. Letcher & A. R. Whiteley, 2017. Experimental test of genetic rescue in isolated populations of brook trout. Molecular Ecology 26: 4418–4433.CrossRefGoogle Scholar
  44. Rollins, M. F., N. V. Vu, I. B. Spies & S. T. Kalinowski, 2009. Twelve microsatellite loci for lake trout (Salvelinus namaycush). Molecular Ecology Resources 9: 871–873.CrossRefGoogle Scholar
  45. Ruzzante, D. E., G. R. McCracken, S. Parmelee, K. Hill, A. Corrigan, J. MacMillan & S. J. Walde, 2016. Effective number of breeders, effective population size and their relationship with census size in an iteroparous species, Salvelinus fontinalis. Proceedings of the Royal Society of London B: Biological Sciences 283: 20152601.CrossRefGoogle Scholar
  46. Serbezov, D., L. Bernatchez, E. M. Olsen & L. A. Vøllestad, 2010. Mating patterns and determinants of individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire stream living population. Molecular Ecology 19: 3193–3205.CrossRefGoogle Scholar
  47. Serbezov, D., P. E. Jorde, L. Bernatchez, E. M. Olsen & L. A. Vøllestad, 2012. Life history and demographic determinants of effective/census size ratios as exemplified by brown trout (Salmo trutta). Evolutionary Applications 5: 925–925.CrossRefGoogle Scholar
  48. Sorensen, P. W., J. R. Cardwell, T. E. Essington & D. E. Weigel, 1995. Reproductive interactions between sympatric brook and brown trout in a small Minnesota stream. Canadian Journal of Fisheries and Aquatic Sciences 52: 1958–1965.CrossRefGoogle Scholar
  49. Tallmon, D. A., D. Gregovich, R. S. Waples, C. S. Baker, J. Jackson, B. L. Taylor, E. Archer, K. K. Martien, F. W. Allendorf & M. K. Schwartz, 2010. When are genetic methods useful for estimating contemporary abundance and detecting population trends? Molecular Ecology Resources 10: 684–692.CrossRefGoogle Scholar
  50. Thériault, V., L. Bernatchez & J. J. Dodson, 2007. Mating system and individual reproductive success of sympatric anadromous and resident brook charr, Salvelinus fontinalis, under natural conditions. Behavioural Ecology and Sociobiology 62: 51–56.CrossRefGoogle Scholar
  51. Thompson, P. D. & F. J. Rahel, 1996. Evaluation of depletion-removal electrofishing of brook trout in small Rocky Mountain streams. North American Journal of Fisheries Management 16: 332–339.CrossRefGoogle Scholar
  52. Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.CrossRefGoogle Scholar
  53. Wang, J., 2004. Sibship reconstruction from genetic data with typing errors. Genetics 166: 1963–1979.CrossRefGoogle Scholar
  54. Wang, J., 2009. A new method for estimating effective population sizes from a single sample of multilocus genotypes. Molecular Ecology 18: 2148–2164.CrossRefGoogle Scholar
  55. Wang, J. & A. W. Santure, 2009. Parentage and sibship inference from multi-locus genotype data under polygamy. Genetics 181: 1579–1594.CrossRefGoogle Scholar
  56. Waples, R. S., 2006. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics 7: 167–184.CrossRefGoogle Scholar
  57. Waples, R. S. & C. Do, 2008. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources 8: 753–756.CrossRefGoogle Scholar
  58. Waples, R. S. & C. Do, 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolutionary Applications 3: 244–262.CrossRefGoogle Scholar
  59. Waples, R. S. & M. Yokota, 2007. Temporal estimates of effective population size in species with overlapping generations. Genetics 175: 219–233.CrossRefGoogle Scholar
  60. Waples, R. S., G. Luikart, J. R. Faulkner & D. A. Tallmon, 2013. Simple life history traits explain key effective population size ratios across diverse taxa. Proc R Soc B 280: 20131339.CrossRefGoogle Scholar
  61. Waples, R. S., T. Antao & G. Luikart, 2014. Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197: 769–780.CrossRefGoogle Scholar
  62. Waters, T. F., 1983. Replacement of brook trout by brown trout over 15 years in a Minnesota stream – production and abundance. Transactions of the American Fisheries Society 112: 137–146.CrossRefGoogle Scholar
  63. Weigel, D. E. & P. W. Sorensen, 2001. The influence of habitat characteristics on the longitudinal distribution of brook, brown, and rainbow trout in a small Midwestern stream. Journal of Freshwater Ecology 16: 599–613.CrossRefGoogle Scholar
  64. White, G. C. & K. P. Burnham, 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46 sup1: S120–S139.CrossRefGoogle Scholar
  65. Whiteley, A. R., J. A. Coombs, M. Hudy, Z. Robinson, A. R. Colton, K. H. Nislow & B. H. Letcher, 2013. Fragmentation and patch size shape genetic structure of brook trout populations. Canadian Journal of Fisheries and Aquatic Sciences 70: 678–688.CrossRefGoogle Scholar
  66. Whiteley, A. R., J. A. Coombs, M. Cembrola, M. J. O’Donnell, M. Hudy, K. H. Nislow & B. H. Letcher, 2015a. Effective number of breeders provides a link between interannual variation in stream flow and individual reproductive contribution in a stream salmonid. Molecular Ecology 24: 3585–3602.CrossRefGoogle Scholar
  67. Whiteley, A. R., S. W. Fitzpatrick, W. C. Funk & D. A. Tallmon, 2015b. Genetic rescue to the rescue. Trends in Ecology & Evolution 30: 42–49.CrossRefGoogle Scholar
  68. Whiteley, A. R., J. A. Coombs, M. J. O’Donnell, K. H. Nislow & B. H. Letcher, 2017. Keeping things local: subpopulation Nb and Ne in a stream network with partial barriers to fish migration. Evolutionary Applications 10: 348–365.CrossRefGoogle Scholar
  69. Wright, S., 1969. Evolution and the Genetics of Populations. The Theory of Gene Frequencies, Vol. 2. University of Chicago Press, Chicago.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Minnesota Department of Natural ResourcesSt. PaulUSA
  2. 2.Minnesota Department of Natural ResourcesLake CityUSA

Personalised recommendations