Laboratory experiments demonstrate that the hissing of the Chinese alligator can effectively inhibit movement of flower fish Ptychobarbus kaznakovi

  • Guoyong Liu
  • Yujiao Wu
  • Xiujun Shen
  • Yaping Hu
  • XiHuo Qin
  • Weixin Tian
  • Liming Liu
  • Xiaoling Wang
  • Xiaotao ShiEmail author
Primary Research Paper


Acoustic barriers, which can deter fish from accessing hazardous areas, have the potential to protect valuable fish stocks. Previous studies have demonstrated that some prey fish species can detect and avoid their predators using sound cues. Such anti-predator responses may be used in acoustic barriers to hinder the movement of prey fish. In this study, the phonotaxic responses of flower fish (Ptychobarbus kaznakovi) were investigated using a playback approach in an outdoor fiberglass tank. By alternating the speakers from which the sounds were emitted and using playbacks of pure tones (500–3000 Hz) as references, the broadband sound from a recording of the Chinese alligator Alligator sinensis hissing (0.05–5 kHz) was broadcast using underwater speakers. The numbers of fish responses and transverse swimming speeds were assessed. Only 15% of the flower fish responded to the pure tones with one response, while the fish had an average of 8.4 responses during the 5-min trials when exposed to the broadband sound (sound of the Chinese alligator hissing). The fish reacted to the broadband sound by swimming away significantly faster than they did to the pure tones. Our results suggest that the broadband sound may be an effective deterrent for repelling flower fish.


Ptychobarbus kaznakovi Phonotaxis Sound of the Chinese alligator hissing Acoustic barrier 



This study was financially supported by the National Natural Science Foundation of China (NSFC 51179096), the Young and Middle-Aged Elitists Scientific and Technological Innovation Team Project of the Institutions of Higher Education in Hubei Province of China (No. T201703), and the Open Foundation of Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University (KF2015-07, KF2015-09). We announce that the experiments complied with the current laws of People’s Republic of China.

Compliance with ethical standards

Conflicts of interest

The authors declare they have no conflicts of interest.


  1. Akamatsu, T., T. Okumura, N. Novarini & H. Y. Yan, 2002. Empirical refinements applicable to the recording of fish sounds in small tanks. The Journal of the Acoustical Society of America 112: 3073–3082.CrossRefGoogle Scholar
  2. Amiro, P. G. & H. Jansen, 2000. Impact of low-head hydropower generation at Morgans Falls, LaHave River on migrating Atlantic salmon (Salmo salar). Canadian Technical Report of Fisheries and Aquatic Sciences 2323: iv–25.Google Scholar
  3. Astrup, J., 1999. Ultrasound detection in fish—a parallel to the sonar-mediated detection of bats by ultrasound-sensitive insects? Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology 124: 19–27.CrossRefGoogle Scholar
  4. Astrup, J. & B. Møhl, 1993. Detection of intense ultrasound by the cod Gadus morhua. Journal of Experimental Biology 182: 71–80.Google Scholar
  5. Chen, B. H., T. M. Hua, X. B. Wu & C. L. Wang, 2003. Research on the Chinese alligator. Shanghai Scientific and Technological Education, Shanghai: 18–252.Google Scholar
  6. Clarkson, R. W., 2004. Effectiveness of electrical fish barriers associated with the central Arizona Project. North American Journal of Fisheries Management 24: 94–105.CrossRefGoogle Scholar
  7. Dunning, D. J. & C. W. D. Gurshin, 2012. Downriver passage of juvenile blueback herring near an ultrasonic field in the mohawk river. North American Journal of Fisheries Management 32: 365–380.CrossRefGoogle Scholar
  8. Ferrari, M. C. O. F., B. D. Wisenden & D. P. Chivers, 2010. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of Zoology 88: 698–724.CrossRefGoogle Scholar
  9. Gray, M. D., P. H. Rogers, A. N. Popper, A. D. Hawkins & R. R. Fay, 2016. In Fay, R. R. & A. N. Popper (eds), The effects of noise on aquatic life II. Springer, New York: 363–369.CrossRefGoogle Scholar
  10. Huang C., 1982. The ecology of the Chinese alligator and changes in its geographical distribution. In Crocodiles. Proceedings of the 5th Working Meeting of the IUCN/SSC Crocodile Specialist Group, Gland: 54–62.Google Scholar
  11. Huntingford, F., S. Coyle, W. Hunter, F. Huntingford, M. Jobling & S. Kadri, 2012. Avoiding Predators. Hoboken, Wiley-Blackwell: 220–247.Google Scholar
  12. Kieffer, J. D., 2000. Limits to exhaustive exercise in fish. Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology 126: 161–179.CrossRefGoogle Scholar
  13. Ladich, F. & R. R. Fay, 2013. Auditory evoked potential audiometry in fish. Reviews in Fish Biology and Fisheries 23: 317–364.CrossRefPubMedCentralGoogle Scholar
  14. Lawrence, B. J. & R. J. F. Smith, 1989. Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. Journal of Chemical Ecology 15: 209–219.CrossRefGoogle Scholar
  15. Lovell, J. M., M. M. Findlay, J. R. Nedwell & M. A. Pegg, 2006. The hearing abilities of the silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis). Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology 143: 286–291.CrossRefGoogle Scholar
  16. Maes, J., A. W. H. Turnpenny, D. R. Lambert, J. R. Nedwell, A. Parmentier & F. Ollevier, 2004. Field evaluation of a sound system to reduce estuarine fish intake rates at a power plant cooling water inlet. Journal of Fish Biology 64: 938–946.CrossRefGoogle Scholar
  17. Mann, D. A., Z. Lu, M. C. Hastings & A. N. Popper, 1998. Detection of ultrasonic tones and simulated dolphin echolocation clicks by a teleost fish, the American shad (Alosa sapidissima). Journal of the Acoustical Society of America 104: 562–568.CrossRefGoogle Scholar
  18. Mesquita, F. O. & H. P. Godinho, 2008. A preliminary study into the effectiveness of stroboscopic light as an aversive stimulus for fish. Applied Animal Behavior Science 111: 402–407.CrossRefGoogle Scholar
  19. Murchy, K. A., B. J. Vetter, M. K. Brey, J. J. Amberg, M. P. Gaikowski & A. F. Mensinger, 2016. Not all carp are created equal: impacts of broadband sound on common carp swimming behavior. Proceedings of Meetings on Acoustics 27: 010032.CrossRefGoogle Scholar
  20. Neo, Y. Y., J. Hubert, L. Bolle, H. V. Winter, C. C. Ten & H. Slabbekoorn, 2016. Sound exposure changes European seabass behaviour in a large outdoor floating pen: effects of temporal structure and a ramp-up procedure. Environmental Pollution 214: 26–34.CrossRefGoogle Scholar
  21. Noatch, M. R. & C. D. Suski, 2012. Non-physical barriers to deter fish movements. Environmental Reviews 20: 71–82.CrossRefGoogle Scholar
  22. Perry, R. W., J. G. Romine, N. S. Adams, A. R. Blake, J. R. Burau, S. V. Johnston & T. L. Liedtke, 2014. Using a non-physical behavioural barrier to alter migration routing of juvenile chinook salmon in the sacramento-san joaquin river delta. River Research and Applications 30: 192–203.CrossRefGoogle Scholar
  23. Plachta, D. T. T. & A. N. Popper, 2003. Evasive responses of American shad (Alosa sapidissima) to ultrasonic stimuli. Acoustics Research Letters Online 4: 25–30.CrossRefGoogle Scholar
  24. Popper, A. N. & T. J. Carlson, 1998. Application of sound and other stimuli to control fish behavior. Transactions of the American Fisheries Society 127: 673–707.CrossRefGoogle Scholar
  25. Richards, N. S., S. R. Chipps & M. L. Brown, 2007. Stress response and avoidance behavior of fishes as influenced by high frequency strobe lights. North American Journal of Fisheries Management 27: 1310–1315.CrossRefGoogle Scholar
  26. Rogers, P. H., A. D. Hawkins, A. N. Popper, R. R. Fay & M. D. Gray, 2016. Parvulescu revisited: small tank acoustics for bioacousticians. In Popper A., Hawkins A. (eds) The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology, 875, 933–941.Google Scholar
  27. Ross, J. P., 1998. Crocodiles: status survey and conservation action plan. Second Edition. IUCN/SSC Crocodile Specialist Group, IUCN, Gland, Switzerland and Cambridge, UK.Google Scholar
  28. Ruebush, B. C., G. G. Sass, J. H. Chick & J. D. Stafford, 2012. In-situ tests of sound-bubble-strobe light barrier technologies to prevent range expansions of Asian carp. Aquatic Invasions 7: 37–48.CrossRefGoogle Scholar
  29. Sfakiotakis, M., J. B. C. Davies & D. M. Lane, 1999. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering 24: 237–252.CrossRefGoogle Scholar
  30. Slabbekoorn, H., 2016. Aiming for progress in understanding underwater noise impact on fish: complementary need for indoor and outdoor studies. Springer, New York: 1057–1065.Google Scholar
  31. Sparks, R. E., T. L. Barkley, S. M. Creque, J. M. Dettmers & K. M. Stainbrook, 2010. Evaluation of an electric fish dispersal barrier in the Chicago Sanitary and Ship Canal. American Fisheries Society Symposium 74: 121–137.Google Scholar
  32. Vetter, B. J., A. R. Cupp, K. T. Fredricks, M. P. Gaikowski & A. F. Mensinger, 2015. Acoustical deterrence of silver carp (Hypophthalmichthys molitrix). Biological Invasions 17: 3383–3392.CrossRefGoogle Scholar
  33. Vetter, B. J., K. A. Murchy, A. R. Cupp, J. J. Amberg, M. P. Gaikowski & A. F. Mensinger, 2017. Acoustic deterrence of bighead carp (Hypophthalmichthys nobilis) to a broadband sound stimulus. Journal of Great Lakes Research 43: 163–171.CrossRefGoogle Scholar
  34. Vetter, B. J., M. K. Brey & A. F. Mensinger, 2018. Reexamining the frequency range of hearing in silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp. PLoS ONE 13: e0192561.CrossRefPubMedCentralGoogle Scholar
  35. Wang, J., Q. Song, D. Yu, G. Yang, L. Xia, K. Su, H. B. Shi, J. Wang & S. K. Yin, 2015. Ontogenetic development of the auditory sensory organ in zebrafish (Danio rerio): changes in hearing sensitivity and related morphology. Scientific Reports 5: 15943.CrossRefPubMedCentralGoogle Scholar
  36. Wang, S., P. Q. Yue & Y. Y. Chen, 1998. China Red Data Book of Endangered Animals-Pisces. Science Press, Beijing.Google Scholar
  37. Wang, X., D. Wang, X. Wu, R. Wang & C. Wang, 2006. Congregative effect of Chinese alligator’s bellowing chorus in mating season and its function in reproduction. Acta Zoologica Sinica 52: 663–668.Google Scholar
  38. Wang, X., D. Wang, X. Wu, R. Wang & C. Wang, 2007. Acoustic signals of Chinese alligators (Alligator sinensis): social communication. Journal of the Acoustical Society of America 121: 2984–2989.CrossRefGoogle Scholar
  39. Wang, Z. H., H. Yao, Y. Z. Ding, J. Thorbjarnarson & X. M. Wang, 2011. Testing reintroduction as a conservation strategy for the critically endangered Chinese alligator: movements and home range of released captive individuals. Chinese Science Bulletin 56: 2586–2593.CrossRefGoogle Scholar
  40. Welton, J. S., W. R. C. Beaumont & R. T. Clarke, 2002. The efficacy of air, sound and acoustic bubble screens in deflecting Atlantic salmon, Salmo salar L., smolts in the River Frome, UK. Fisheries Management and Ecology 9: 11–18.CrossRefGoogle Scholar
  41. Wilson, M., M. L. Acolas, M. L. Bégout, P. T. Madsen & M. Wahlberg, 2008. Allis shad (Alosa alosa) exhibit an intensity-graded behavioural response when exposed to ultrasound. The Journal of the Acoustical Society of America 124: 243–247.CrossRefGoogle Scholar
  42. Wilson, M., H. B. Schack, P. T. Madsen, A. Surlykke & M. Wahlberg, 2011. Directional escape behavior in allis shad (Alosa alosa) exposed to ultrasonic clicks mimicking an approaching toothed whale. Journal of Experimental Biology 214: 22–29.CrossRefGoogle Scholar
  43. Wu, J. & X. Wang, 2004. Regulation of bellowing of Chinese alligators (Alligator sinensis) in the wild. Zoological Research 25: 281–286.Google Scholar
  44. Zeddies, D. G., R. R. Fay, P. W. Alderks, K. S. Shaub & J. A. Sisneros, 2010. Sound source localization by the plainfin midshipman fish, Porichthys notatus. Journal of the Acoustical Society of America 127: 3104–3113.CrossRefGoogle Scholar
  45. Zeddies, D. G., R. R. Fay, M. D. Gray, P. W. Alderks, A. Acob & J. A. Sisneros, 2012. Local acoustic particle motion guides sound-source localization behavior in the plainfin midshipman fish, Porichthys notatus. Journal of Experimental Biology 215: 152–160.CrossRefGoogle Scholar
  46. Zielinski, D. P. & P. W. Sorensen, 2017. Silver, bighead, and common carp orient to acoustic particle motion when avoiding a complex sound. PLoS ONE 12: e0180110.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Guoyong Liu
    • 1
    • 2
  • Yujiao Wu
    • 1
    • 2
  • Xiujun Shen
    • 3
  • Yaping Hu
    • 4
  • XiHuo Qin
    • 1
    • 2
  • Weixin Tian
    • 2
  • Liming Liu
    • 1
  • Xiaoling Wang
    • 5
  • Xiaotao Shi
    • 2
    Email author
  1. 1.Hubei International Scientific and Technological Cooperation Center of Ecological Protection and Management in the Three Gorges AreaChina Three Gorges UniversityYichangPeople’s Republic of China
  2. 2.Engineering Research Center of Eco-Environment in the Three Gorges Reservoir Region, Ministry of EducationChina Three Gorges UniversityYichangPeople’s Republic of China
  3. 3.Agricultural Services Center of Wangdian Town in Dangyang CountyYichangPeople’s Republic of China
  4. 4.Institute of Chinese Sturgeon ResearchChina Three Gorges Project CorporationYichangPeople’s Republic of China
  5. 5.Wuhan Agricultural Comprehensive Administrative Law Enforcement TeamWuhanPeople’s Republic of China

Personalised recommendations