Development of marine biofilm on plastic: ecological features in different seasons, temperatures, and light regimes

  • Cristina MisicEmail author
  • Anabella Covazzi Harriague
Primary Research Paper


Microorganisms are able to colonise abiotic surfaces in marine waters, supporting ecological and biogeochemical functions. In turn, environmental factors may determine the accrual and activity of microbial biofilms. The environment is subject to global climate change and pollution by plastic, and therefore we focused on the response of natural marine biofilm on common plastic items (bottles) to seasonality, increases in temperature, and light regime in experimental systems. Chlorophyll-a, prokaryotic abundance and replication frequency, organic matter (OM), and enzymatic activity were measured. Statistical analysis indicated that different environmental conditions modified the biofilms. Summer conditions favoured photoautotrophic organisms. The increase of photoautotrophic biomass could have caused the prokaryotic microorganisms’ lowest abundances. Temperature rise affected chlorophyll-a and increased hydrolytic activities, responsible for OM degradation, as also recorded in the absence of light. In winter, temperature variation led to a delayed increase of enzymatic activity, suggesting the need for a time lag to potentiate OM recycling. The correlations between prokaryotic abundance and the other variables highlighted tighter links in cases of temperature alteration. Our results indicated that a potential temperature increase, and light limitation due to plastic sinking in the water column, could modify the biofilm community, increasing the role of prokaryotic organisms.


Marine biofilm Plastic Organic matter Microalgae Prokaryotic organisms Environmental forcing 



We wish to thank L. Gaozza for his help in the microorganism analysis and G. Persia and C. Siani for their hard work in constructing the experimental systems, collecting, and analysing the samples.


  1. Acuña, V. & K. Tockner, 2010. The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Global Change Biology 16: 2638–2650.Google Scholar
  2. Balasubramanian, V., K. Natarajan, B. Hemambika, N. Ramesh, C. Sumathi, R. Kottaimuthu & V. Rajesh Kannan, 2010. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Letters in Applied Microbiology 51: 205–211.PubMedGoogle Scholar
  3. Bhosle, N. B., A. Garg, L. Fernandes & P. Citon, 2005. Dynamics of amino acids in the conditioning film developed on glass panels immersed in the surface seawaters of Dona Paula Bay. Biofouling 21: 99–107.CrossRefGoogle Scholar
  4. Browne, M. A., T. S. Galloway & R. Thompson, 2010. Spatial patterns of plastic debris along estuarine shorelines. Environmental Science and Technology 44: 3404–3409.CrossRefGoogle Scholar
  5. Carson, H. S., M. S. Nerheim, K. A. Carroll & M. Eriksen, 2013. The plastic-associated microorganisms of the North Pacific Gyre. Marine Pollution Bulletin 75: 126–132.CrossRefGoogle Scholar
  6. Clarke, K. R. & R. M. Warwick, 2001. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Plymouth.Google Scholar
  7. Cooper, D. A. & P. L. Corcoran, 2010. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai. Hawaii. Marine Pollution Bulletin 60(5): 650–654.CrossRefGoogle Scholar
  8. Dang, H. Y. & C. R. Lovell, 2000. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Applied Environmental Microbiology 66: 467–475.CrossRefGoogle Scholar
  9. Dang, H. Y. & C. R. Lovell, 2016. Microbial surface colonization and biofilm development in marine environments. Microbiology and Molecular Biology Reviews 80: 91–138.CrossRefGoogle Scholar
  10. Dang, H., T. Li, M. Chen & G. Huang, 2008. Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Applied Environmental Microbiology 74: 52–60.CrossRefGoogle Scholar
  11. Dobretsov, S., 2010. Marine biofilms. In Dürr, S. & J. C. Thomason (eds), Biofouling. Wiley-Blackwell, Chichester: 123–136.Google Scholar
  12. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356.CrossRefGoogle Scholar
  13. Gregory, M. R., 2009. Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosophical Transactions of the Royal Society of London. Series B, Biological Science 364: 2013–2025.CrossRefGoogle Scholar
  14. Gregory, M. R. & A. L. Andrady, 2003. Plastics in the marine environment. In: Andrady, A. L. (ed.), Plastics and the Environment. Wiley, ISBN 0-471-09520-6.Google Scholar
  15. Hagström, A., U. Larsson, P. Hörstedt & S. Normark, 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Applied Environmental Microbiology. 37: 805–812.PubMedGoogle Scholar
  16. Hansen, H. P. & K. Grasshoff, 1983. Automated chemical analysis. In Grassoff, K., M. Ehrhardt & K. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, Weinheim: 347–379.Google Scholar
  17. Harshvardhan, K. & B. Jha, 2013. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin 77: 100–106.CrossRefGoogle Scholar
  18. Hedges, J. I. & J. H. Stern, 1984. Carbon and nitrogen determination of carbonate containing solids. Limnology and Oceanography 29: 657–663.CrossRefGoogle Scholar
  19. Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Applied Environmental Microbiology 33: 1225–1228.PubMedGoogle Scholar
  20. Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes & J. D. H. Strickland, 1965. Fluorometric determination of chlorophyll. ICES Journal of Marine Science 30: 3–15.CrossRefGoogle Scholar
  21. Hoppe, H. G., 1983. Significance of exoenzymatic activities in the ecology of brackish water: measurement by means of methylumbelliferyl-substrates. Marine Ecology Progress Series 11: 299–308.CrossRefGoogle Scholar
  22. House, W. A., 2003. Geochemical cycling of phosphorus in rivers. Applied Geochemistry 18: 739–748.CrossRefGoogle Scholar
  23. Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan & K. L. Law, 2015. Plastic waste inputs from land into the ocean. Science 347: 768–771.CrossRefGoogle Scholar
  24. Jones, P. R., M. T. Cottrell, D. L. Kirchman & S. C. Dexter, 2007. Bacterial community structure of biofilms on artificial surfaces in an estuary. Microbial Ecology 53: 153–162.CrossRefGoogle Scholar
  25. Lobelle, D. & M. Cunliffe, 2011. Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin 62: 197–200.CrossRefGoogle Scholar
  26. Manca Zeichen, M., M. G. Finoia, G. P. Gasparini, R. Cattaneo-Vietti, M.Castellano, M. Locritani, P. Povero & L. Tunesi, 2008. Contribution of remote sensing to the monitoring of environmental parameters in the Portofino marine protected area (Ligurian Sea): a preliminary test. In Proceedings of the ‘2nd MERIS/(A)ATSR User Workshop’, Frascati, Italy, 22–26 September 2008 (ESA SP-666, November 2008).Google Scholar
  27. Mathur, S., D. Agrawal & A. Jajoo, 2014. Photosynthesis: response to high temperature stress. Journal of Photochemistry and Photobiology. B, Biology 137: 116–126.CrossRefGoogle Scholar
  28. Misic, C. & A. Covazzi Harriague, 2008. Organic matter recycling in a shallow coastal zone (NW Mediterranean): the influence of local and global climatic forcing and organic matter lability on hydrolytic enzyme activity. Continental Shelf Research 28: 2725–2735.CrossRefGoogle Scholar
  29. Misic, C., M. Castellano & A. Covazzi Harriague, 2011. Organic matter features, degradation and remineralisation at two coastal sites in the Ligurian Sea (NW Mediterranean) differently influenced by anthropogenic forcing. Marine Environmental Research 72: 67–74.CrossRefGoogle Scholar
  30. Moore, C. J., S. L. Moore, M. K. Leecaster & S. B. Weisberg, 2001. A comparison of plastic and plankton in the north Pacific central gyre. Marine Pollution Bulletin 42: 1297–1300.CrossRefGoogle Scholar
  31. Oberbeckmann, S., M. G. Loeder, G. Gerdts & A. M. Osborn, 2014. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiology Ecology 90: 478–492.CrossRefGoogle Scholar
  32. Proia, L., A. M. Romaní & S. Sabater, 2012. Nutrients and light effects on stream biofilms: a combined assessment with CLSM, structural and functional parameters. Hydrobiologia 695: 281–291.CrossRefGoogle Scholar
  33. Ramasamy, P. & X. Zhang, 2005. Effects of shear stress on the secretion of extracellular polymeric substances in biofilms. Water Science and Technology 52: 217–223.CrossRefGoogle Scholar
  34. Reisser, J., J. Shaw, G. Hallegraeff, M. Proietti, D. K. A. Barnes, M. Thums, C. Wilcox, B. D. Hardesty & C. Pattiaratchi, 2014. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS ONE 9(6): e100289.CrossRefGoogle Scholar
  35. Rios, L. M., C. Moore & P. R. Jones, 2007. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Marine Pollution Bulletin 54: 1230–1237.CrossRefGoogle Scholar
  36. Romaní, A. M. & S. Sabater, 1999. Effect of primary producers on the heterotrophic metabolism of a stream biofilm. Freshwater Biology 41: 729–736.CrossRefGoogle Scholar
  37. Romaní, A. M., A. Giorgi, V. Acuña & S. Sabater, 2004. The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. Limnology and Oceanography 49: 1713–1721.CrossRefGoogle Scholar
  38. Romani, A. M., K. Fund, J. Artigas, T. Schwartz, S. Sabater & U. Obst, 2008. Relevance of polymeric matrix enzymes during biofilm formation. Microbial Ecology 56: 427–436.CrossRefGoogle Scholar
  39. Ruggieri, N., M. Castellano, C. Misic, G. Gasparini, R. Cattaneo-Vietti & P. Povero, 2006. Seasonal and interannual dynamics of a coastal ecosystem (Portofino, Ligurian Sea) in relation to meteorological constraints. Geophysical Research Abstracts 8:07774, EGU.Google Scholar
  40. Schiaparelli, S., M. Castellano, P. Povero, G. Sartoni & R. Cattaneo-Vietti, 2007. A benthic mucilage event in North-Western Mediterranean Sea and its possible relationships with the summer 2003 European heatwave: short term effects on littoral rocky Assemblages. Marine Ecology: an Evolutionary Perspective 28: 341–353.CrossRefGoogle Scholar
  41. Sutherland, I. W., 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147: 3–9.CrossRefGoogle Scholar
  42. Teeling, H., B. M. Fuchs, D. Becher, C. Klockow, A. Gardebrecht, C. M. Bennke, M. Kassabgy, S. Huang, A. J. Mann, J. Waldmann, M. Weber, A. Klindworth, A. Otto, J. Lange, J. Bernhardt, C. Reinsch, M. Hecker, J. Peplies, F. D. Bockelmann, U. Callies, G. Gerdts, A. Wichels, K. H. Wiltshire, F. O. Glöckner, T. Schweder & R. Amann, 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 336: 608–611.CrossRefGoogle Scholar
  43. Teuten, E. L., S. J. Rowland, T. S. Galloway & R. C. Thompson, 2007. Potential for plastics to transport hydrophobic contaminants. Environmental Science & Technology 41: 7759–7764.CrossRefGoogle Scholar
  44. Thompson, R. C., Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D. McGonigle & A. E. Russell, 2004. Lost at sea: where is all the plastic? Science 304: 838.CrossRefGoogle Scholar
  45. Thompson, R. C., P. S. Moschella, S. R. Jenkins, T. A. Norton & S. J. Hawkins, 2005. Differences in photosynthetic marine biofilms between sheltered and moderately exposed rocky shores. Marine Ecology Progress Series 296: 53–63.CrossRefGoogle Scholar
  46. Tsuchiya, Y., M. Ikenaga, A. Kurniawan, A. Hiraki, T. Arakawa, R. Kusakabe & H. Morisaki, 2009. Nutrient-rich microhabitats within biofilms are synchronized with the external environment. Microbes and Environments 24: 43–51.CrossRefGoogle Scholar
  47. Tsuchiya, Y., S. Eda, C. Kiriyama, T. Asada & H. Morisaki, 2016. Analysis of dissolved organic nutrients in the interstitial water of natural biofilms. Microbial Ecology 72: 85–95.CrossRefGoogle Scholar
  48. Von Schiller, D., E. Martí, J. L. Riera & F. Sabater, 2007. Effects of nutrients and light on periphyton biomass and nitrogen uptake in Mediterranean streams with contrasting land uses. Freshwater Biology 52: 891–906.CrossRefGoogle Scholar
  49. Wahl, M., 1989. Marine epibiosis 1. Fouling and antifouling-some basic aspects. Marine Ecology Progress Series 58: 175–189.CrossRefGoogle Scholar
  50. Webb, H. K., R. J. Crawford, T. Sawabe & E. P. Ivanova, 2009. Poly (ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes and Environments 24: 39–42.CrossRefGoogle Scholar
  51. Wigglesworth-Cooksey, B. & K. E. Cooksey, 2005. Use of fluorophore-conjugated lectins to study cell-cell interactions in model marine biofilms. Applied Environmental Microbiology 71: 428–435.CrossRefGoogle Scholar
  52. Ylla, I., A. M. Romaní & S. Sabater, 2012. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature. Microbial Ecology 64: 593–604.CrossRefGoogle Scholar
  53. Zardus, J. D., B. T. Nedved, Y. Huang, C. Tran & M. G. Hadfield, 2008. Microbial biofilms facilitate adhesion in biofouling invertebrates. Biological Bulletin 214(1): 91–98.CrossRefGoogle Scholar
  54. Zettler, E. R., T. J. Mincer & L. A. Amaral-Zettler, 2013. Life in the ‘Plastisphere’: microbial communities on plastic marine debris. Environmental Science & Technology 47: 7137–7146.CrossRefGoogle Scholar
  55. Zuur, A. F., E. N. Ieno & G. M. Smith, 2007. Analysing Ecological Data. Springer, New York.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DiSTAV)Università di GenovaGenoaItaly

Personalised recommendations