Advertisement

Trachydiscus guangdongensis sp. nov., a new member of Eustigmatophyceae (Stramenopiles) isolated from China: morphology, phylogeny, fatty acid profile, pigment, and cell wall composition

  • Baoyan Gao
  • Luodong Huang
  • Feifei Wang
  • Chengwu ZhangEmail author
Primary Research Paper
  • 33 Downloads

Abstract

The microalgal strain, JNU5, was isolated downriver from the Hengshishui River of the Guangdong Province, China. The morphology of JNU5 revealed that it was a spherical, unicellular organism with a smooth cell wall. The cell contained a large vacuole and prominent, reddish globule. The pigment composition revealed that chlorophyll a was the only chlorophyll, and violaxanthin was the predominant carotenoid along with vaucheriaxanthin-ester and β-carotene. The fatty acid profile of JNU5 mainly consisted of myristic acid, palmic acid, linoleic acid, and eicosapentaenoic acid (EPA). Moreover, the EPA content consisted of up to 40% of total fatty acids. Phylogeny was determined using the 18S rDNA sequences suggested that JNU5 was a member of Eustigmatophyceae, belonging to Clade IIa and was close to Trachydiscus minutus. T. minutus and JNU5 were easily distinguished by cell shape and size. This indicates that JNU5 is a new species, and thus, we have named it, Trachydiscus guangdongensis sp. nov.. Meanwhile, the cell wall composition of JNU5 was analyzed and was found to be mainly composed of galactose (66%) with some glucose and mannose present. The water-soluble polysaccharide (WSP) of the cell wall was primarily composed of galactose, which accounted for 90% of total sugar.

Keywords

Eustigmatophyceae Taxonomy Trachydiscus guangdongensis sp. nov. Pigments Fatty acids Cell wall polysaccharide 

Notes

Acknowledgements

The research was supported by the following fundings: the Special Project of Application-oriented Technical Research and Development of Guangdong Province (No. 2015B020235007); the Sinopec joint program of China Petroleum and Chemical Corporation (contract number: ST18005-2); the Natural Science Foundation of China (No. 31170337); and the National High Technology Research and Development Program of China (863 Program) (No. 2013AA065805).

References

  1. Aburai, N., S. Ohkubo, H. Miyashita & K. Abe, 2013. Composition of carotenoids and identification of aerial microalgae isolated from the surface of rocks in mountainous districts of Japan. Algal Research 2: 237–247.CrossRefGoogle Scholar
  2. Baudelet, P. H., G. Ricochon, M. Linder & L. Muniglia, 2017. A new insight into cell walls of Chlorophyta. Algal Research 25: 333–371.CrossRefGoogle Scholar
  3. Boudouresque, C. F., 2015. Taxonomy and phylogeny of unicellular eukaryotes. In Bertrand, J. C., P. Caumette, P. Lebaron, R. Matheron, P. Normand & T. Sime-Ngando (eds), Environmental Microbiology: Fundamentals and Applications. Microbial Ecology. Springer, Dordrecht: 191–257.Google Scholar
  4. Cepák, V., P. Přibyl, J. Kohoutková & P. Kaštánek, 2014. Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. Journal of Applied Phycology 26: 181–190.CrossRefGoogle Scholar
  5. Corteggiani Carpinelli, E., A. Telatin, N. Vitulo, C. Forcato, M. D’Angelo, R. Schiavon, A. Vezzi, G. M. Giacometti, T. Morosinotto & G. Valle, 2014. Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion. Molecular Plant 7: 323–335.CrossRefGoogle Scholar
  6. Eliáš, M., Amaral, R., Fawley, K. P., Fawley, M. W., Němcová, Y., Neustupa, J., & T. Ševčíková, 2017. Eustigmatophyceae. Handbook of the Protists, 1–39Google Scholar
  7. Fawley, M. W. & K. P. Fawley, 2017. Rediscovery of Tetraedriella subglobosa Pascher, a member of the Eustigmatophyceae. Fottea 17: 96–102.CrossRefGoogle Scholar
  8. Fawley, K. P., M. Eliáš & M. W. Fawley, 2014. The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. Journal of Applied Phycology 26: 1773–1782.CrossRefGoogle Scholar
  9. Gao, B., J. Yang, X. Lei, S. Xia, A. Li & C. Zhang, 2016. Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultured with different initial nitrate supplies. Journal of Applied Phycology 28: 821–830.CrossRefGoogle Scholar
  10. Gao, B., S. Xia, X. Lei & C. Zhang, 2018. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos. cf. polyphem. Journal of Applied Phycology 30: 215–229.CrossRefGoogle Scholar
  11. Hegewald, E., J. Padisák & T. Friedl, 2007. Pseudotetraëdriella kamillae: taxonomy and ecology of a new member of the algal class Eustigmatophyceae (Stramenopiles). Hydrobiologia 586: 107–116.CrossRefGoogle Scholar
  12. Hibberd, D. J., 1974. Observations on the cytology and ultrastructure of Chlorobotrys regularis (West) Bohlin with special reference to its position in the Eustigmatophyceae. British Phycological Journal 9: 37–46.CrossRefGoogle Scholar
  13. Hibberd, D. J. & G. F. Leedale, 1970. Eustigmatophyceae-a new algal class with unique organization of the motile cell. Nature, London 225: 758–760.CrossRefGoogle Scholar
  14. Hibberd, D. J. & G. F. Leedale, 1972. Observations on the cytology and ultrastructure of the new algal class, Eustigmatophyceae. Annals of Botany 36: 49–71.CrossRefGoogle Scholar
  15. Hoek, C., H. Van den Hoeck, D. Mann & H. M. Jahns, 1995. Algae: an introduction to phycology. Cambridge University Press, Cambridge: 455.Google Scholar
  16. Iliev, I., G. Petkov, J. Lukavsky, S. Furnadzhieva, R. Andreeva & V. Bankova, 2015. The alga Trachydiscus minutus (Pseudostaurastrum minutum): growth and composition. General and Applied Plant Physiology 3–4: 222–231.Google Scholar
  17. Jo, M. J. & S. B. Hur, 2015. Growth and nutritional composition of Eustigmatophyceae Monodus subterraneus and Nannochloropsis oceanica in autotrophic and mixotrophic culture. Ocean and Polar Research 37: 61–71.CrossRefGoogle Scholar
  18. Krienitz, L. & M. Wirth, 2006. The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica-Ecology and Management of Inland Waters 36: 204–210.CrossRefGoogle Scholar
  19. Krienitz, L., D. Hepperle, H. B. Stich & W. Weiler, 2000. Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39: 219–227.CrossRefGoogle Scholar
  20. Lang, I., L. Hodac, T. Friedl & I. Feussner, 2011. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biology 11: 124.CrossRefGoogle Scholar
  21. Li, Z., X. Ma, A. Li & C. Zhang, 2012. A novel potential source of β-carotene: eustigmatos cf. polyphem (Eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors. Bioresource Technology 117: 257–263.CrossRefGoogle Scholar
  22. Lukavský, J., 2012. Trachydiscus minutus: A New Algal EPA Producer. Algae: Ecology, Economic Uses and Environment Impact. Nova Science Publication, New York: 77–104.Google Scholar
  23. Nakayama, T., A. Nakamura, A. Yokoyama, T. Shiratori, I. Inouye & K. I. Ishida, 2015. Taxonomic study of a new eustigmatophycean alga, Vacuoliviride crystalliferum gen. et sp. nov. Journal of Plant Research 128: 249–257.CrossRefGoogle Scholar
  24. Ott, D. W. & C. K. Oldham-Ott, 2003. Eustigmatophyte, Raphidophyte, and Tribophyte algae. In Freshwater Algae of North America. 423–469.Google Scholar
  25. Přibyl, P., M. Eliaš, V. Cepak, J. Lukavský & P. Kaštanek, 2012. Zoosporogenesis, morphology, ultrastructure, pigment composition, and phylogenetic position of Trachydiscus minutus (Eustigmatophyceae, Heterokontophyta). Journal of Phycology 48: 231–242.CrossRefGoogle Scholar
  26. Řezanka, T., J. Lukavský, L. Nedbalová & K. Sigler, 2011. Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry 72: 2342–2351.CrossRefGoogle Scholar
  27. Rodolfi, L., G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini & M. R. Tredici, 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology Bioengineering 102: 100–112.CrossRefGoogle Scholar
  28. Schnepf, E., A. Niemann & C. Wilhelm, 1996. Pseudostaurastrum limneticum, a eustigmatophycean alga with astigmatic zoospores: morphogenesis, fine structure, pigment composition and taxonomy. Archiv für Protistenkunde 146: 237–249.CrossRefGoogle Scholar
  29. Suda, S., M. Atsumi & H. Miyashita, 2002. Taxonomic characterization of a marine Nannochloropsis species, N. oceanica sp. nov. (Eustigmatophyceae). Phycologia 41: 273–279.CrossRefGoogle Scholar
  30. Trzcińska, M., B. Pawlik-Skowrońska, D. Krokowski & S. Watanabe, 2014. Genetic and morphological characteristics of two ecotypes of Eustigmatos calaminaris sp. nov. (Eustigmatophyceae) inhabiting Zn– and Pb–loaded calamine mine spoils. Fottea 14: 1–13.CrossRefGoogle Scholar
  31. Volkman, J. K., S. M. Barrett & S. I. Blackburn, 1999. Fatty acids and hydroxy fatty acids in three species of freshwater eustigmatophytes. Journal of Phycology 35: 1005–1012.CrossRefGoogle Scholar
  32. Wang, D., K. Ning, J. Li, J. Hu, D. Han, H. Wang & J. Xu, 2014. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genetics 10: e1004094.CrossRefGoogle Scholar
  33. Wang, Q., Y. Lu, Y. Xin, L. Wei, S. Huang & J. Xu, 2016. Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal 88: 1071–1081.CrossRefGoogle Scholar
  34. Wang, F., B. Gao, L. Huang, M. Su, C. Dai & C. Zhang, 2018. Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel. Bioresource Technology 270: 30–37.CrossRefGoogle Scholar
  35. Whittle, S. J. & P. J. Casselton, 1969. The chloroplast pigments of some green and yellow-green algae. British Phycological Journal 4: 55–64.CrossRefGoogle Scholar
  36. Xia, S., B. Gao, A. Li, J. Xiong, Z. Ao & C. Zhang, 2014. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Marine Drugs 12: 4883.CrossRefGoogle Scholar
  37. Zhang, J. J., L. L. Wan, S. Xia, A. F. Li & C. W. Zhang, 2013. Morphological and spectrometric analyses of lipids accumulation in a novel oleaginous microalga, Eustigmatos cf. polyphem (Eustigmatophyceae). Bioprocess and Biosystems Engineering 36: 1125–1130.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Ecology, Research Center for HydrobiologyJinan UniversityGuangzhouPeople’s Republic of China

Personalised recommendations