Advertisement

Hydrobiologia

, Volume 834, Issue 1, pp 163–181 | Cite as

Using stable isotope approach to quantify pond dam impacts on isotopic niches and assimilation of resources by invertebrates in temporary streams: a case study

  • Brian FourEmail author
  • Marielle Thomas
  • Michael Danger
  • Nicolas Angeli
  • Marie-Elodie Perga
  • Damien Banas
Primary Research Paper

Abstract

Fishponds built across streams can greatly affect their functioning, especially through loss of ecological continuity but also changes in water availability and trophic resources. Yet, their consequences on communities and stream functioning remain largely understudied. We investigated effects of fishpond dams on the trophic ecology of macroinvertebrate communities in temporary low-order streams using C and N stable isotopes. Food resources and macroinvertebrates were sampled in one upstream and one downstream site of two temporary streams, one stream without (reference stream) versus one with a fishpond (impacted stream) and used for isotopic analyses. Results suggested moderate effects of fishponds on the upstream tributaries. In contrast, at the downstream impacted site, ten times higher macroinvertebrate biomass and modifications in the trophic niches were recorded, likely due to changes in resource availability/quality and dam-related hydrology. By modifying the food sources as well as water fluxes, fishpond dams tend to alter macroinvertebrate communities but also shift the trophic dynamics downstream. This assessment stresses the need for exploring their impacts on food webs and nutrient fluxes at larger downstream distances to better understand their effects before drawing conclusions in regard to their management.

Keywords

Barrage fishpond Food web Trophic dynamics Intermittent river Delta15Delta13

Notes

Acknowledgements

The authors gratefully acknowledge the financial support for this project by the ‘Agence de l’Eau Rhin-Meuse’ and the ‘Zone Atelier Moselle’. We sincerely thank E. Arce, P. Chaud, B. Le Carrer and Y. Namokel for their field and laboratory work, as well as the fish farmers, the ‘Office National des Forêts’ for providing us with access permits for sampling. We are also extremely grateful to the INRA of Champenoux for allowing us to use the laboratory facilities and conduct the stable isotope analysis at PTEF OC 081 from the UMR 1137 and UR 1138. The PTEF facility is supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01). We also want to thank the three anonymous reviewers and the associate editor, M. M. Sánchez-Montoya, who help to improve this final manuscript.

Supplementary material

10750_2019_3920_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1467 kb)

References

  1. Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.CrossRefGoogle Scholar
  2. Aubin J., H. Rey-Valette S. Mathé M. Legendre J. Slembrouck, E. Chia, G. Masson, M. Callier, J.-P. Blancheton, A. Tocqueville, D. Caruso & P. Fontaine, 2014. Guide de mise en œuvre de l’intensification écologique pour les systèmes aquacoles. Inra-Rennes. 131 p.Google Scholar
  3. Banas, D. & G. Masson, 2003. New plate sediment traps for lentic systems. Archiv für Hydrobiologie 158: 283–288.CrossRefGoogle Scholar
  4. Banas, D., G. Masson, L. Leglize & J. C. Pihan, 2002. Discharge of sediments, nitrogen (N) and phosphorus (P) during the emptying of extensive fishponds: effect of rain-fall and management practices. Hydrobiologia 472: 29–38.CrossRefGoogle Scholar
  5. Banas, D., G. Masson, L. Leglize, P. Usseglio-Polatera & C. E. Boyd, 2008. Assessment of sediment concentration and nutrients loads in effluents drained from extensively-managed fishponds in France. Environmental Pollution 152: 679–685.CrossRefGoogle Scholar
  6. Bearhop, S., C. E. Adams, S. Waldron, R. A. Fuller & H. MacLeod, 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007–1012.CrossRefGoogle Scholar
  7. Boecklen, W. J., C. T. Yarnes, B. A. Cook & A. C. James, 2011. On the Use of Stable Isotopes in Trophic Ecology. Annual Review of Ecology, Evolution, and Systematics 42: 411–440.CrossRefGoogle Scholar
  8. Brett, M., 2014. Resource polygon geometry predicts Bayesian stable isotope mixing model bias. Marine Ecology Progress Series 514: 1–12.CrossRefGoogle Scholar
  9. Brett, M. T., M. J. Kainz, S. J. Taipale & H. Seshan, 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proceedings of the National Academy of Sciences 106: 21197–21201.CrossRefGoogle Scholar
  10. Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.CrossRefGoogle Scholar
  11. Bunn, S. E., P. M. Davies & T. D. Mosisch, 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology 41: 333–345.CrossRefGoogle Scholar
  12. Caut, S., E. Angulo & F. Courchamp, 2009. Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology 46: 443–453.CrossRefGoogle Scholar
  13. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology 18: 117–143.CrossRefGoogle Scholar
  14. Cogo, G., C. Biasi & S. Santos, 2014. The effect of the macroconsumer Aegla longirostri (Crustacea, Decapoda) on the invertebrate community in a subtropical stream. Acta Limnologica Brasiliensia 26: 143–153.CrossRefGoogle Scholar
  15. Convention on Wetlands of International Importance especially as Waterfowl Habitat, 1971. Ramsar (Iran). UN Treaty Series No. 14583.Google Scholar
  16. Costantini, M. L., E. Calizza & L. Rossi, 2014. Stable isotope variation during fungal colonisation of leaf detritus in aquatic environments. Fungal Ecology 11: 154–163.CrossRefGoogle Scholar
  17. Crenier, C., J. Arce Funck, A. Bec, F. Perrière, E. Billoir, J. Leflaive, F. Guérold, V. Felten & M. Danger, 2017. Minor food sources can play a major role in secondary production in detritus-based ecosystems. Freshwater Biology. 62(7): 1155–1167.  https://doi.org/10.1111/fwb.12933.CrossRefGoogle Scholar
  18. Cucherousset, J. & S. Villéger, 2015. Quantifying the multiple facets of isotopic diversity: new metrics for stable isotope ecology. Ecological Indicators 56: 152–160.CrossRefGoogle Scholar
  19. de Castro, D. M. P., D. R. de Carvalho, P. dos Santos Pompeu, M. Z. Moreira, G. B. Nardoto & M. Callisto, 2016. Land use influences niche size and the assimilation of resources by benthic macroinvertebrates in tropical headwater streams. PLoS ONE 11: e0150527.CrossRefGoogle Scholar
  20. Danger, M., J. Cornut, E. Chauvet, P. Chavez, A. Elger & A. Lecerf, 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94: 1604–1613.CrossRefGoogle Scholar
  21. Dodds, W. K. & M. R. Whiles, 2010. Freshwater Ecology: Concepts and Environmental Applications of Limnology, 2nd ed. Elsevier Science Publishing Co Inc, Amsterdam.Google Scholar
  22. Doucett, R. R., J. C. Marks, D. W. Blinn, M. Caron & B. A. Hungate, 2007. Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen. Ecology 88: 1587–1592.CrossRefGoogle Scholar
  23. Elosegi, A. & S. Sabater, 2013. Effects of hydromorphological impacts on river ecosystem functioning: a review and suggestions for assessing ecological impacts. Hydrobiologia 712: 129–143.CrossRefGoogle Scholar
  24. European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, Brussels, Belgium. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000 L0060
  25. Finlay, J. C. & C. Kendall, 2007. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. Stable isotopes in ecology and environmental science 2: 283–333.CrossRefGoogle Scholar
  26. Fisher, S. G. & G. E. Likens, 1973. Energy flow in bear brook, new hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43: 421–439.CrossRefGoogle Scholar
  27. Four, B., E. Arce, M. Danger, J. Gaillard, M. Thomas & D. Banas, 2017a. Catchment land use-dependent effects of barrage fishponds on the functioning of head water streams. Environmental Science and Pollution Research 24: 5452–5468.CrossRefGoogle Scholar
  28. Four, B., M. Thomas, E. Arce, A. Cébron, M. Danger & D. Banas, 2017b. Fishpond dams affect leaf-litter processing and associated detritivore communities along intermittent low-order streams. Freshwater Biology 62: 1741–1755.  https://doi.org/10.1111/fwb.12984.CrossRefGoogle Scholar
  29. Fry, B., 2008. Stable Isotope Ecology, 3rd ed. Springer, New York.Google Scholar
  30. Fry, B., 2013. Alternative approaches for solving underdetermined isotope mixing problems. Marine Ecology Progress Series 472: 1–13.CrossRefGoogle Scholar
  31. Gaillard, J., M. Thomas, A. Iuretig, C. Pallez, C. Feidt, X. Dauchy & D. Banas, 2016a. Barrage fishponds: reduction of pesticide concentration peaks and associated risk of adverse ecological effects in headwater streams. Journal of Environmental Management 169: 261–271.CrossRefGoogle Scholar
  32. Gaillard, J., M. Thomas, A. Lazartigues, B. Bonnefille, C. Pallez, X. Dauchy, C. Feidt & D. Banas, 2016b. Potential of barrage fish ponds for the mitigation of pesticide pollution in streams. Environmental Science and Pollution Research 23(1): 23–35.CrossRefGoogle Scholar
  33. Gan, J. J., P. C. Zhu, S. D. Aust & A. T. Lemley, 2004. Pesticide Decontamination and Detoxification. ACS Symposium Series; American Chemical Society: Washington, DC, United States of America.Google Scholar
  34. González, J. M., S. Molla, N. Roblas, E. Descals, O. Moya & C. Casado, 2013. Small dams decrease leaf litter breakdown rates in Mediterranean mountain streams. Hydrobiologia 712: 117–128.CrossRefGoogle Scholar
  35. Guenet, B., M. Danger, L. Abbadie & G. Lacroix, 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91: 2850–2861.CrossRefGoogle Scholar
  36. Guilpart, A., J.-M. Roussel, J. Aubin, T. Caquet, M. Marle & H. Le Bris, 2012. The use of benthic invertebrate community and water quality analyses to assess ecological consequences of fish farm effluents in rivers. Ecological Indicators 23: 356–365.CrossRefGoogle Scholar
  37. Hameed, A., S. Ahmad, R. T. Ahmad & H. Karar, 2011. Pesticide detoxification in invertebrates, plants and microbes. Life Sciences International Journal 5: 2186–2194.Google Scholar
  38. Hastie, T. J. & D. Pregibon, 1992. Generalized linear models. Chapter 6 of Statistical Models in S. eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.Google Scholar
  39. Jacob, U., K. Mintenbeck, T. Brey, R. Knust & K. Beyer, 2005. Stable isotope food web studies: a case for standardized sample treatment. Marine Ecology Progress Series 287: 251–253.CrossRefGoogle Scholar
  40. Kuehn, K. A., S. N. Francoeur, R. H. Findlay & R. K. Neely, 2014. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95: 749–762.CrossRefGoogle Scholar
  41. Layman, C. A., M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post & S. Bearhop, 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews 87: 545–562.CrossRefGoogle Scholar
  42. Majdi, N., N. Hette-Tronquart, E. Auclair, A. Bec, T. Chouvelon, B. Cognie, M. Danger, P. Decottignies, A. Dessier, C. Desvilettes, S. Dubois, C. Dupuy, C. Fritsch, C. Gaucherel, M. Hedde, F. Jabot, S. Lefebvre, M. P. Marzloff, B. Pey, N. Peyrard, T. Powolny, R. Sabbadin, E. Thébault & M.-E. Perga, 2018. There’s no harm in having too much: a comprehensive toolbox of methods in trophic ecology. Food webs 16: e00100.CrossRefGoogle Scholar
  43. Martinez Arbizu, P., 2017. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.0.1.Google Scholar
  44. Martínez, A., A. Larranaga, A. Basaguren, J. Pérez, C. Mendoza-Lera & J. Pozo, 2013. Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. Hydrobiologia 711: 31–42.CrossRefGoogle Scholar
  45. Mathé, S. & H. Rey-Valette, 2015. Local knowledge of pond fish-farming ecosystem services: management implications of stakeholders’ perceptions in three different contexts (Brazil, France and Indonesia). Sustainability 7: 7644–7666.CrossRefGoogle Scholar
  46. McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.CrossRefGoogle Scholar
  47. McCarthy, J., W. Taylor & J. Taft, 1984. Geothermal and cold springs faunas: inorganic carbon sources affect isotope values. Marine Biology 65: 49–60.Google Scholar
  48. Menendez, M., E. Descals, T. Riera & O. Moya, 2012. Effect of small reservoirs on leaf litter decomposition in Mediterranean headwater streams. Hydrobiologia 691: 135–146.CrossRefGoogle Scholar
  49. Merritt, R. W. & K. W. Cummins, 1996. An introduction to the aquatic insects of North America, 3rd ed. Kendall/Hunt, Duduque, Iowa.Google Scholar
  50. Millennium Ecosystem Assessment (Program) ed. 2005. Ecosystems and human well-being: synthesis. Island Press, Washington, DC.Google Scholar
  51. Nelson, D., 2011. Gammarus-microbial interactions: a review. International Journal of Zoology 2011: 6.CrossRefGoogle Scholar
  52. Nõges, T., H. Luup & T. Feldmann, 2010. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquatic Ecology 44: 83–92.CrossRefGoogle Scholar
  53. Oertli, B. & P.-A. Frossard, 2013. Mares et étangs—Ecologie, gestion, aménagement et valorisation. Presses Polytechniques et universitaires romandes.Google Scholar
  54. Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5: E9672.CrossRefGoogle Scholar
  55. Perga, M.-E, 2004. Etude de l’origine du carbone des réseaux trophiques lacustres à partir des compositions isotopiques du carbone et de l’azote des poissons et du zooplancton. Université de Savoie.Google Scholar
  56. Perkins, M. J., R. A. McDonald, F. J. F. van Veen, S. D. Kelly, G. Rees & S. Bearhop, 2014. Application of nitrogen and carbon stable isotopes (δ15 N and δ13C) to quantify food chain length and trophic structure. PLoS ONE 9: e93281.CrossRefGoogle Scholar
  57. Pinet, F. & C. Hélan, 2015. La Caldésie à feuilles de parnassie. Une plante d’importance européenne dans les étangs de la Brenne (Indre - France); témoin possible d’une histoire des étangs. In: Mieux comprendre les étangs. Expériences nationales et internationales. Du Berry Limousin à l’Europe Orientale. Les Monédières. pp. 171–179. eds Touchart, L., P. Bartout & O. Motchalova.Google Scholar
  58. Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.CrossRefGoogle Scholar
  59. Rasmussen, J. B., 2010. Estimating terrestrial contribution to stream invertebrates and periphyton using a gradient-based mixing model for δ 13 C. Journal of Animal Ecology 79: 393–402.CrossRefGoogle Scholar
  60. Rosemond, A. D., C. M. Pringle & A. Ramirez, 1998. Macroconsumer effects on insect detritivores and detritus processing in a tropical stream. Freshwater Biology 39: 515–523.CrossRefGoogle Scholar
  61. Searle, S. R., F. M. Speed & G. A. Milliken, 1980. Population marginal means in the linear model: an alternative to least squares means. The American Statistician 34: 216–221.Google Scholar
  62. Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry. Princeton University Press, Princeton, USA.Google Scholar
  63. Tachet, H., F. Richoux, M. Bournaud & P. Usseglio-Polatera, 2010. Invertébrés d’eau douce : systématique, biologie, écologie. CNRS, Paris (FR).Google Scholar
  64. Thorp, J. H. & M. D. Delong, 1994. The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70: 305.CrossRefGoogle Scholar
  65. Tibi, A. & O. Therond, 2017. Evaluation des services écosystémiques rendus par les écosystèmes agricoles. Une contribution au programme EFESE. Synthèse du rapport d’étude, Inra (France): 118.Google Scholar
  66. Torremorell, A., M. E. Llames, G. L. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.CrossRefGoogle Scholar
  67. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  68. Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Elsevier Science Publishing Co Inc., Amsterdam.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université de Lorraine, Inra, URAFPANancyFrance
  2. 2.INRA, UAR 1275 DEPT EFPA Département Ecologie des Forêts, Prairies et milieux Aquatiques. Centre de NancyChampenouxFrance
  3. 3.LTSER France, Zone Atelier du Bassin de la MoselleVandœuvre-lès-NancyFrance
  4. 4.Université de Lorraine – LIEC, UMR7360, CNRSMetzFrance
  5. 5.UMR 1137 INRA-UHP Ecologie et Ecophysiologie Forestières, INRA - Centre de NancyChampenouxFrance
  6. 6.Institute of Earth Surface DynamicsUniversity of LausanneLausanneSwitzerland

Personalised recommendations