, Volume 834, Issue 1, pp 145–162 | Cite as

Dispersal of rotifers and cladocerans by waterbirds: seasonal changes and hatching success

  • E. Moreno
  • C. Pérez-Martínez
  • J. M. Conde-PorcunaEmail author
Primary Research Paper


Aquatic invertebrates can be geographically dispersed by abiotic vectors (wind, rain and water flow) or organisms (mainly by insects, fishes and waterbirds). However, there is a lack of information on the dispersal by waterbirds of cladocerans and especially rotifers, and on the hatching success of the dispersed propagules. Here, we quantify the dispersal of cladocerans and rotifers by waterbirds through analysis of their faecal droppings collected in a wetland formed by two natural lakes located in Doñana National Park (Spain). We also study the influence of different photoperiod and temperature conditions on the hatching success of the dispersal propagules. Diapausing propagules of 22 species of rotifers or cladocerans were identified in waterbird faecal droppings, with a mean number of 0.9 diapausing propagules per dropping. The hatching success rate, which was not influenced by photoperiod or temperature, was low (~ 12.5%). Nevertheless, the role of rotifer dispersal by waterbirds appears to have been underestimated in the past. In this study area, the dispersal of rotifers by waterbirds may be at least as relevant as their dispersal by air currents. Further studies are needed to evaluate the relative importance of dispersal mechanisms (mainly air currents and animal vectors) in different geographical areas.


Zooplankton Diapausing propagules Zooplankton dispersal Hatching rate 



Financial support was provided by the Project CGL2007-65784/BOS, which was funded by the Inter-ministerial Commission of Science and Technology of Spain. E. Moreno was supported by a FPI fellowship from the Spanish Ministry of Education and Science. The authors thank David G. Jenkins and two anonymous reviewer for substantially improving the manuscript and are grateful to the Doñana Biological Station for its collaboration. The authors are also grateful to Richard Davies for linguistic improvements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Battauz, Y. S., S. B. J. de Paggi & J. C. Paggi, 2015. Endozoochory by an ilyophagous fish in the Parana River floodplain: a window for zooplankton dispersal. Hydrobiologia 755: 161–171.CrossRefGoogle Scholar
  2. Bohonak, A. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater aquatic invertebrates. Ecology Letters 6: 783–796.CrossRefGoogle Scholar
  3. Bolker, B., H. Skaug, A. Magnusson & A. Nielsen, 2012. Getting started with the glmmADMB package.
  4. Bolker, B. M., 2015. Linear and generalized linear mixed models. In Fox, G. A., S. Negrete-Yankelevich & V. J. Sosa (eds), Ecological Statistics: Contemporary Theory and Application. Oxford University Press, New York: 309–334.CrossRefGoogle Scholar
  5. Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J. S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.CrossRefGoogle Scholar
  6. Brendonck, L., T. Pinceel & R. Ortells, 2017. Dormancy and dispersal as mediators of zooplankton population and community dynamics along a hydrological disturbance gradient in inland temporary pools. Hydrobiologia 796: 201–222.CrossRefGoogle Scholar
  7. Brochet, A. L., M. Guillemain, H. Fritz, M. Gauthier-Clerc & A. J. Green, 2009. The role of migratory ducks in the long-distance dispersal of native plants and the spread of exotic plants in Europe. Ecography 32: 919–928.Google Scholar
  8. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference, 2nd ed. Springer-Verlag, New York.Google Scholar
  9. Cáceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.CrossRefGoogle Scholar
  10. Campillo, S., M. Serra, M. J. Carmona & A. Gómez, 2011. Widespread secondary contact and new glacial refugia in the halophilic rotifer Brachionus plicatilis in the Iberian Peninsula. PloS One 6: e20986.CrossRefGoogle Scholar
  11. Charalambidou, I. & L. Santamaría, 2002. Waterbirds as endozoochorous dispersers of aquatic organisms: a review of experimental evidence. Acta Oecologica 23: 165–176.CrossRefGoogle Scholar
  12. Cohen, G. M. & J. B. Shurin, 2003. Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103: 603–617.CrossRefGoogle Scholar
  13. Conde-Porcuna, J. M., E. Ramos-Rodríguez & C. Pérez-Martínez, 2014. In situ production of empty ephippia and resting eggs by an obligate parthenogenetic Daphnia population. Journal of Plankton Research 36: 157–169.CrossRefGoogle Scholar
  14. Conde-Porcuna, J. M., C. Pérez-Martínez & E. Moreno, 2018. Variations in the hatching response of rotifers to salinity and waterbird ingestion. Journal of Plankton Research 40: 326–341.CrossRefGoogle Scholar
  15. De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135.CrossRefGoogle Scholar
  16. Dupuis, A. P. & B. J. Hann, 2009. Climate change, diapause termination and zooplankton population dynamics: an experimental and modeling approach. Freshwater Biology 54: 221–235.CrossRefGoogle Scholar
  17. Equipo de Seguimiento de Doñana; ICTS-Reserva Biológica de Doñana (EBD-CSIC). Memoria del año hidrometeorológico 2008–2009. 2009. Programa de Seguimiento de Procesos y Recursos Naturales en el Espacio Natural Doñana; Dirección General de Espacios Naturales y Participación Ciudadana. Junta de Andalucía—Estación Biológica de Doñana (CSIC): Sevilla, Spain.Google Scholar
  18. Equipo de Seguimiento de Doñana; ICTS-Reserva Biológica de Doñana (EBD-CSIC). Memoria del año hidrometeorológico 2009–2010. 2010. Programa de Seguimiento de Procesos y Recursos Naturales en el Espacio Natural Doñana; Dirección General de Espacios Naturales y Participación Ciudadana. Junta de Andalucía—Estación Biológica de Doñana (CSIC): Sevilla, Spain.Google Scholar
  19. Espinar, J. L. & L. Serrano, 2009. A quantitative geomorphological approach to the classification of temporary wetlands in the Doñana National Park (SW Spain). Aquatic Ecology 43: 323–334.CrossRefGoogle Scholar
  20. Espinar, J. L., L. V. García, J. Figuerola, A. J. Green & L. Clemente, 2004. Helophyte germination in a Mediterranean salt marsh: Gut-passage by ducks changes seed response to salinity. Journal of Vegetation Science 15: 315–322.CrossRefGoogle Scholar
  21. Evans, M. E. K. & J. J. Dennehy, 2005. Germ banking: bet-hedging and variable release from egg and seed dormancy. The Quarterly Review of Biology 80: 431–451.CrossRefGoogle Scholar
  22. Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.CrossRefGoogle Scholar
  23. Figuerola, J., A. J. Green & L. Santamaría, 2002. Comparative dispersal effectiveness of wigeongrass seeds by waterfowl wintering in south-west Spain: quantitative and qualitative aspects. Journal of Ecology 90: 989–1001.CrossRefGoogle Scholar
  24. Figuerola, J., A. J. Green & L. Santamaría, 2003. Passive internal transport of aquatic organisms by waterfowl in Donana, south-west Spain. Global Ecology and Biogeography 12: 427–436.CrossRefGoogle Scholar
  25. Fisher, N. I., 1995. Statistical analysis of circular data. Cambridge University Press, Cambridge.Google Scholar
  26. Fournier, D. A., H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. Maunder, A. Nielsen & J. Sibert, 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods & Software 27: 233–249.CrossRefGoogle Scholar
  27. Frisch, D., A. J. Green & J. Figuerola, 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquatic Sciences 69: 568–574.CrossRefGoogle Scholar
  28. García-Roger, E. M., M. J. Carmona & M. Serra, 2005. Deterioration patterns in diapausing egg banks of Brachionus (Müller, 1786) rotifer species. Journal of Experimental Marine Biology and Ecology 314: 149–161.CrossRefGoogle Scholar
  29. García-Roger, E. M., M. J. Carmona & M. Serra, 2006. Hatching and viability of rotifer diapausing eggs collected from pond sediments. Freshwater Biology 51: 1351–1358.CrossRefGoogle Scholar
  30. García-Roger, E. M., M. Serra & M. J. Carmona, 2014. Bet-hedging in diapausing egg hatching of temporary rotifer populations - A review of models and new insights. International Review of Hydrobiology 99: 96–106.CrossRefGoogle Scholar
  31. Green, A. J. & J. Figuerola, 2005. Recent advances in the study of long distance dispersal of aquatic invertebrates via birds. Diversity and Distributions 11: 149–156.CrossRefGoogle Scholar
  32. Green, A. J., J. Figuerola & M. I. Sánchez, 2002. Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecologica 23: 177–189.CrossRefGoogle Scholar
  33. Green, A. J., K. M. Jenkins, D. Bell, P. J. Morris & R. T. Kingsford, 2008. The potential role of waterbirds in dispersing invertebrates and plants in arid Australia. Freshwater Biology 53: 380–392.Google Scholar
  34. Green, A. J., D. Frisch, T. C. Michot, L. K. Allain & W. C. Barrow, 2013. Endozoochory of seeds and invertebrates by migratory waterbirds in Oklahoma, USA. Limnetica 32: 39–46.Google Scholar
  35. Green, A. J., J. Bustamante, G. F. E. Janss, R. Fernández-Zamudio & C. Díaz-Paniagua, 2016. Doñana wetlands (Spain). In Finlayson, C. M., G. R. Milton, R. C. Prentice & N. C. Davidson (eds), The Wetland Book: II: Distribution, Description and Conservation. Springer, Dordrecht: 1–14.Google Scholar
  36. Gyllström, M. & L. Hansson, 2004. Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquatic Sciences 66: 274–295.CrossRefGoogle Scholar
  37. Havel, J. E. & J. B. Shurin, 2004. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnology and Oceanography 49: 1229–1238.CrossRefGoogle Scholar
  38. Holland, T. A. & D. G. Jenkins, 1998. Comparison of processes regulating zooplankton assemblages in new freshwater ponds. Hidrobiologia 387(388): 207–214.CrossRefGoogle Scholar
  39. Jammalamadaka, S. R. & U. J. Lund, 2006. The effect of wind direction on ozone levels: a case study. Environmental and Ecological Statistics 13: 287–298.CrossRefGoogle Scholar
  40. Jenkins, D. G., 1995. Dispersal-limited zooplankton distribution and community composition in new ponds. Hydrobiologia 313(314): 15–20.CrossRefGoogle Scholar
  41. Jenkins, D. G. & A. L. Buikema Jr., 1998. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecological Monographs 63: 421–443.CrossRefGoogle Scholar
  42. Jenkins, D. G. & M. O. Underwood, 1998. Zooplankton may not disperse readily in wind, rain or waterfowl. Hydrobiologia 387(388): 15.CrossRefGoogle Scholar
  43. Johnson, R. A. & T. E. Wehrly, 1978. Some angular-linear distributions and related regression models. Journal of the American Statistical Association 73: 602–606.CrossRefGoogle Scholar
  44. Koste, W., 1978. Rotatoria Die Radertiere Mitteleuropas bergriindet von Max Voigt-Monogononta. 2. Auflage neubearbeitet von Walter Koste. Gebrlider Borntraeger, Berlin.Google Scholar
  45. Lindén, A. & S. Mäntyniemi, 2011. Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 92: 1414–1421.CrossRefGoogle Scholar
  46. Lopes, P. M., R. Bozelli, L. M. Bini, J. M. Santangelo & S. A. J. Declerck, 2016. Contributions of airborne dispersal and dormant propagule recruitment to the assembly of rotifer and crustacean zooplankton communities in temporary ponds. Freshwater Biology 61: 658–669.CrossRefGoogle Scholar
  47. López-Archilla, A. I., M. Coleto, C. Montes, I. Penin & M. C. Guerrero, 2012. Temporal variation of phytoplankton in two neighbouring Mediterranean shallow lakes in Doñana National Park (Spain). Limnetica 31: 289–304.Google Scholar
  48. Louette, G. & L. De Meester, 2005. High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86: 353–359.CrossRefGoogle Scholar
  49. Lovas-Kiss, Á., M. I. Sánchez, A. V. Molnár, L. Valls, X. Armengol, F. Mesquita-Joanes & A. J. Green, 2018. Crayfish invasion facilitates dispersal of plants and invertebrates by gulls. Freshwater Biology 63: 392–404.CrossRefGoogle Scholar
  50. Lukaszewski, Y., S. E. Arnott & T. M. Frost, 1999. Regional versus local processes in determining zooplankton community composition of Little Rock Lake, Wisconsin, USA. Journal of Plankton Research 21: 991–1003.CrossRefGoogle Scholar
  51. Marcus, N. H., 1990. Calanoid copepod, cladoceran, and rotifer eggs in sea bottom sediments of northern Californian coastal waters: identification, occurrence and hatching. Marine Biology 105: 413–418.CrossRefGoogle Scholar
  52. Mardia, K. V., 1976. Linear-circular correlation coefficients and rhythmometry. Biometrika 63: 403–405.CrossRefGoogle Scholar
  53. Mardia, K. V. & P. E. Jupp, 2000. Directional Statistics. Wiley, New York.Google Scholar
  54. Marion, L., P. Clergeau, L. Brient & G. Bertru, 1994. The importance of avian-contributed nitrogen (N) and phosphorus (P) to Lake Grand-Lieu, France. In Kerekes, J. J. (ed.), Aquatic Birds in the Trophic Web of Lakes. Developments in Hydrobiology. Springer, Dordrecht: 133–147.CrossRefGoogle Scholar
  55. Martin, T. G., B. A. Wintle, J. R. Rhodes, P. M. Kuhnert, S. A. Field, S. J. Low-Choy, A. J. Tyre & H. P. Possingham, 2005. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters 8: 1235–1246.CrossRefGoogle Scholar
  56. May, L., 1986. Rotifer sampling-a complete species list from one visit. Hydrobiologia 134: 117–120.CrossRefGoogle Scholar
  57. Michels, E., K. Cottenie, L. Neys & L. De Meester, 2001. Zooplankton on the move: first results on the quantification of dispersal of zooplankton in a set of interconnected ponds. Hydrobiologia 442: 117–126.CrossRefGoogle Scholar
  58. Moreno, E., C. Pérez-Martínez & J. M. Conde-Porcuna, 2016. Dispersal of zooplankton dormant propagules by wind and rain in two aquatic systems. Limnetica 35: 323–336.Google Scholar
  59. Moreno, E., J. M. Conde-Porcuna & A. Gómez, 2017. Barcoding rotifer biodiversity in Mediterranean ponds using diapausing egg banks. Ecology and Evolution 7: 4855–4867. Scholar
  60. Muñoz, J., A. Gómez, J. Figuerola, F. Amat, C. Rico & A. J. Green, 2014. Colonization and dispersal patterns of the invasive American brine shrimp Artemia franciscana (Branchiopoda: Anostraca) in the Mediterranean region. Hydrobiologia 726: 25–41.CrossRefGoogle Scholar
  61. Onbé, T., 1978. Sugar flotation method for the sorting the eggs of marine cladocerans and copepods from sea-bottom sediment. Bulletin of the Japanese Society of Scientific Fisheries 44: 1411.CrossRefGoogle Scholar
  62. Pérez-Martínez, C., L. Jiménez, E. Moreno & J. M. Conde-Porcuna, 2013. Emergence pattern and hatching cues of Daphnia pulicaria (Crustacea, Cladocera) in an alpine lake. Hydrobiologia 707: 47–57.CrossRefGoogle Scholar
  63. Pinceel, T., B. Vanschoenwinkel, W. Hawinkel, K. Tuytens & L. Brendonck, 2017. Aridity promotes bet hedging via delayed hatching: a case study with two temporary pond crustaceans along a latitudinal gradient. Oecologia 184: 161–170.CrossRefGoogle Scholar
  64. Pinheiro, J. C. & D. M. Bates, 2000. Mixed-Effects Models in S and SPLUS. Springer-Verlag, New York.CrossRefGoogle Scholar
  65. Proctor, V. W. & C. R. Malone, 1965. Further evidence of the passive dispersal of small aquatic organisms via the intestinal tract of birds. Ecology 46: 728–729.CrossRefGoogle Scholar
  66. Ricklefs, R. E., 1987. Community diversity: relative roles of local and regional processes. Science 235: 167–171.CrossRefGoogle Scholar
  67. Rogers, D. C., 2014. Larger hatching fractions in avian dispersed anostracan eggs (Branchiopoda). Journal of Crustacean Biology 34: 135–143.CrossRefGoogle Scholar
  68. Sánchez, M. I., F. Hortas, J. Figuerola & A. J. Green, 2012. Comparing the potential for dispersal via waterbirds of a native and an invasive brine shrimp. Freshwater Biology 57: 1896–1903.CrossRefGoogle Scholar
  69. Schielzeth, H. & S. Nakagawa, 2013. Nested by design: model fitting and interpretation in a mixed model era. Methods in Ecology and Evolution 4: 14–24.CrossRefGoogle Scholar
  70. Serrano, L. & M. Zunzunegui, 2008. The relevance of preserving temporary ponds during drought: hydrological and vegetation changes over a 16-year period in the Doñana National Park (south-west Spain). Aquatic Conservation-Marine and Freshwater Ecosystems 18: 261–279.CrossRefGoogle Scholar
  71. Serrano, L., M. Reina, G. Martín, I. Reyes, A. Arechederra, D. León & J. Toja, 2006. The aquatic systems of Doñana (SW Spain): watersheds and frontiers. Limnetica 25: 11–32.Google Scholar
  72. Shurin, J. B., J. E. Havel, M. A. Leibold & B. Pinel-Alloul, 2000. Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81: 3062–3073.CrossRefGoogle Scholar
  73. Sirianni, K. M., 2017. Differential wind dispersal of cladoceran ephippia in a rock pool metacommunity. Aquatic Ecology 51: 203–218.CrossRefGoogle Scholar
  74. Skaug H, D. Fournier, A. Nielsen, A. Magnusson & B. Bolker, 2016. Generalized Linear Mixed Models using AD Model Builder. R package version Scholar
  75. Ślusarczyk, M. & S. Flis, 2019. Light quantity, not photoperiod terminates diapause in the crustacean Daphnia. Limnology and Oceanography 64: 124–130.CrossRefGoogle Scholar
  76. Soons, M. B., A. L. Brochet, E. Kleyheeg & A. J. Green, 2016. Seed dispersal by dabbling ducks: an overlooked dispersal pathway for a broad spectrum of plant species. Journal of Ecology 104: 443–455.CrossRefGoogle Scholar
  77. Stross, R. G., 1966. Light and temperature requirements for diapause development and release in Daphnia. Ecology 47: 368–374.CrossRefGoogle Scholar
  78. van Leeuwen, C. H. A., A. Lovas-Kiss, M. Ovegard & A. J. Green, 2017. Great cormorants reveal overlooked secondary dispersal of plants and invertebrates by piscivorous waterbirds. Biology Letters 13: 20170406.CrossRefGoogle Scholar
  79. Valls, L., A. Castillo-Escriva, L. Barrera, E. Gómez, J. A. Gil-Delgado, F. Mesquita-Joanes & X. Armengol, 2017. Differential endozoochory of aquatic invertebrates by two duck species in shallow lakes. Acta Oecologica 80: 39–46.CrossRefGoogle Scholar
  80. Vandekerkhove, J., B. Niessen, S. Declerck, E. Jeppesen, J. M. Conde-Porcuna, L. Brendonck & L. De Meester, 2004. Hatching rate and success of isolated versus non-isolated zooplankton eggs. Hydrobiologia 526: 235–241.CrossRefGoogle Scholar
  81. Vandekerkhove, J., S. Declerck, L. Brendonck, J. M. Conde-Porcuna, E. Jeppesen & L. De Meester, 2005. Hatching of cladoceran resting eggs: temperature and photoperiod. Freshwater Biology 50: 96–104.CrossRefGoogle Scholar
  82. Vanschoenwinkel, B., C. De Vries, M. Seaman & L. Brendonck, 2007. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116: 1255–1266.CrossRefGoogle Scholar
  83. Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008a. Any way the wind blows - frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.CrossRefGoogle Scholar
  84. Vanschoenwinkel, B., A. Waterkeyn, T. Vandecaetsbeek, O. Pineau, P. Grillas & L. Brendonck, 2008b. Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology 53: 2264–2273.Google Scholar
  85. Welsh, A. H., R. B. Cunningham & R. Chambers, 2000. Methodology for estimating the abundance of rare animals: seabird nesting on North East Herald Cay. Biometrics 56: 22–30.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Water Research, University of GranadaGranadaSpain
  2. 2.Department of Ecology, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations