, Volume 834, Issue 1, pp 103–117 | Cite as

Influence of hydrodynamic connectivity on the genetic structure and gene flow of the common pandora Pagellus erythrinus

  • Anna Rita Rossi
  • Paolo ColangeloEmail author
  • Léo Berline
  • Elisa Angiulli
  • Giandomenico Ardizzone
  • Chiheb Fassatoui
  • Luciana Sola
Primary Research Paper


Many marine organisms have complex genetic patterns that cannot be easily resolved by data analysis on spatial distribution of variability usually applied in population genetic studies. We propose an analytical framework to evaluate the role of dispersal during early life stages that considers the actual hydrodynamic connectivity in the Mediterranean Sea, as a factor shaping the population structure of demersal fishes. To this purpose, and to test different scenarios of gene flow, genotypes of individuals of Pagellus erythrinus sampled at 12 sites in the central Mediterranean Sea were analyzed at ten microsatellite loci. The results show the lack of genetic structure in western Mediterranean basin and a pattern of gene flow that deviates from an isolation by distance model. The observed gene flow estimates appear to be scale-dependent. At local scale, it is likely the result of multifactorial components, whereas at a larger scale it is mainly driven by the sea currents, directly influencing dispersal of larvae between sites not reachable by adult movements. Our results stress the importance of a quantitative analysis of potential early life stage dispersal in any study focusing on the population structure of fishes with a long larval stage.


Demersal Dispersal Marine fishes Microsatellite Sparidae Oceanic circulation 



We thank the MEDITS coordinators and all of our colleagues for their invaluable help with sample collection, specifically Maria Teresa Spedicato and Giuseppe Lembo, COISPA (Bari); Angelo Cau, Dept. of Life and Environmental Sciences, Cagliari University; Corrado Piccinetti, Dept. of Biological, Geological and Environmental Sciences, Bologna University; Angelo Tursi, Dept. of Biology, Bari University; Fabio Fiorentino, Coastal Marine Environment Institute, Mazara del Vallo; and Mohamed Salah Romdhane, INAT/Université de Carthage, Tunisia. Financial support for this work was provided by Sapienza University of Rome, Sapienza Projects 2014, Grant C26A143AL3.

Supplementary material

10750_2019_3914_MOESM1_ESM.pdf (82 kb)
Supplementary material 1 (PDF 82 kb)
10750_2019_3914_MOESM2_ESM.pdf (68 kb)
Supplementary material 2 (PDF 68 kb)
10750_2019_3914_MOESM3_ESM.pdf (83 kb)
Supplementary material 3 (PDF 82 kb)
10750_2019_3914_MOESM4_ESM.pdf (96 kb)
Supplementary material 4 (PDF 95 kb)
10750_2019_3914_MOESM5_ESM.pdf (74 kb)
Supplementary material 5 (PDF 73 kb)
10750_2019_3914_MOESM6_ESM.pdf (78 kb)
Supplementary material 6 (PDF 78 kb)


  1. Aljanabi, S. M. & I. Martinez, 1997. Universal and rapid salt extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25: 4692–4693.PubMedPubMedCentralGoogle Scholar
  2. Almany, G. R., M. L. Berumen, S. R. Thorrold, S. Planes & G. P. Jones, 2007. Local replenishment of coral reef fish populations in a marine reserve. Science 316: 742–744.PubMedGoogle Scholar
  3. Andrello, M., M. N. Jacobi, S. Manel, W. Thuiller & D. Mouillot, 2015. Extending networks of protected areas to optimize connectivity and population growth rate. Ecography 38: 273–282.Google Scholar
  4. Angers, B. & L. Bernatchez, 1998. Combined use of SMM and non-SMM methods to infer fine structure and evolutionary history of closely related brook charr (Salvelinus fontinalis, Salmonidae) populations from microsatellites. Molecular Biology and Evolution 15: 143–159.Google Scholar
  5. Angiulli, E., L. Sola, G. Ardizzone, C. Fassatoui & A. R. Rossi, 2016. Phylogeography of the common pandora Pagellus erythrinus in the central Mediterranean Sea: sympatric mitochondrial lineages and genetic homogeneity. Marine Biology Research 12: 4–15.Google Scholar
  6. Antao, T., A. Lopes, R. J. Lopes, A. Beja-Pereira & G. Luikart, 2008. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9: 323.PubMedPubMedCentralGoogle Scholar
  7. Avise, J. C., 2000. Phylogeography. The history and formation of species. Harvard University Press, Cambridge, MA.Google Scholar
  8. Bauchot, M. L. & J. C. Hureau, 1986. Sparidae. In: Whitehead, P. J. P., M. L. Bauchot, J. C. Hureau, J. Nielsen, & E. Tortonese, (eds), Fishes of the North-Eastern Atlantic and the Mediterranean, Vol. 2. UNESCO, Paris: 883–907.Google Scholar
  9. Beaumont, M. A. & R. A. Nichols, 1996. Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London B: Biological Sciences 263: 1619–1626.Google Scholar
  10. Beerli, P., 2006. Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics 22: 341–345.PubMedGoogle Scholar
  11. Beerli, P. & J. Felsenstein, 2001. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceeding of the National Academy of Science USA 98: 4563–4568.Google Scholar
  12. Beerli, P. & M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185: 313–326.PubMedPubMedCentralGoogle Scholar
  13. Benjamini, Y. & Y. Hochberg, 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Statistical methodology 57: 289–300.Google Scholar
  14. Benvenuto, C., I. Coscia, J. Chopelet, M. Sala-Bozano & S. Mariani, 2017. Ecological and evolutionary consequences of alternative sex change pathways in fish. Scientific Reports 7: 9084.PubMedPubMedCentralGoogle Scholar
  15. Berline, L., A. M. Rammou, A. Doglioli, A. Molcard & A. Petrenko, 2014. A Connectivity-Based Eco-Regionalization Method of the Mediterranean Sea. PLoSONE 9: e111978.Google Scholar
  16. Berry, O., P. England, D. Fairclough, G. Jackson & J. Greenwood, 2012. Microsatellite DNA analysis and hydrodynamic modelling reveal the extent of larval transport and gene flow between management zones in an exploited marine fish (Glaucosoma hebraicum). Fisheries Oceanography 21: 243–254.Google Scholar
  17. Bertrand, J., L. Gil de Sola, C. Papaconstantinou, C. Relini & A. Souplet, 2002. The general specifications of the MEDITS surveys. Scientia Marina 66: 9–17.Google Scholar
  18. Bohonak, A. J., 1999. Dispersal, gene flow, and population structure. The Quarterly Review of Biology 74: 21–45.PubMedGoogle Scholar
  19. Busalacchi, B., T. Bottari, D. Giordano, A. Profeta & P. Rinelli, 2014. Distribution and biological features of the common pandora, Pagellus erythrinus (Linnaeus, 1758), in the southern Tyrrhenian Sea (Central Mediterranean). Marine Research 68: 491–501.Google Scholar
  20. Carlsson, J., 2008. Effects of microsatellite null alleles on assignment testing. Journal of Heredity 99: 616–623.PubMedGoogle Scholar
  21. Chapuis, M. P. & A. Estoup, 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24: 621–631.PubMedGoogle Scholar
  22. Chopelet, J., S. Helyar, B. Mann & S. Mariani, 2009. Novel polymorphic microsatellite loci for the ptotogynous hermaphrodite slinger sea bream (Chrysoblephus puniceus, Sparidae). Molecular Ecology Research 9: 1223–1226.Google Scholar
  23. Cowen, R. & S. Sponaugle, 2009. Larval dispersal and marine population connectivity. Annual Review of Marine Science 1: 443–466.PubMedGoogle Scholar
  24. Crandall, E. D., E. A. Treml & P. H. Barber, 2012. Coalescent and biophysical models of stepping-stone gene flow in neritid snails. Molecular Ecology 21: 5579–5598.PubMedGoogle Scholar
  25. Davies, S. W., E. A. Treml, C. D. Kenkel & M. V. Matz, 2015. Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean. Molecular Ecology 24: 70–82.PubMedGoogle Scholar
  26. Dempster, A. P., N. M. Laird & D. B. Rubin, 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Statistical methodology 39: 1–38.Google Scholar
  27. Dharmarajan, G., W. S. Beatty & E. R. Olin Jr., 2013. Heterozygote deficiencies caused by a Wahlund effect: Dispelling unfounded expectations. The Journal of Wildlife Management 77: 226–234.Google Scholar
  28. Durand, J. D., H. Blel, K. N. Shen, E. T. Koutrakis & B. Guinand, 2013. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: a single mitochondrial clade and many nuclear barriers. Marine Ecology Progress Series 474: 243–261.Google Scholar
  29. Excoffier, L. & H. E. L. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567.PubMedGoogle Scholar
  30. Excoffier, L., T. Hofer & M. Foll, 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103: 285–298.PubMedGoogle Scholar
  31. Faillettaz, R., C. B. Paris & J. O. Irisson, 2018. Larval fish swimming behavior alters dispersal patterns from marine protected areas in the north-western Mediterranean Sea. Frontiers in Marine Science 5: 97.Google Scholar
  32. Falush, D., M. Stephens & J. K. Pritchard, 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.PubMedPubMedCentralGoogle Scholar
  33. FAO, 2018. FishStat plus. Capture production 1950-2012, Aquaculture production 1950-2016. [available on internet at].
  34. Fassatoui, C., E. Mdelgi & M. S. Romdhane, 2009. A preliminary investigation of allozyme genetic variation and population structure in common pandora (Pagellus erythrinus, Sparidae) from Tunisian and Libyan coasts. Ichthyological Research 56: 301–307.Google Scholar
  35. Fassatoui, C., E. Mdelgi & M. S. Romdhane, 2011. Short-term temporal genetic investigation of two populations of Pagellus erythrinus (Linnaeus, 1758, Sparidae) from Western and Eastern Mediterranean basins off the Tunisian coast. Marine Biology Research 7: 147–158.Google Scholar
  36. Félix-Hackradt, F. C., C. W. Hackradt, Á. Pérez-Ruzafa & J. A. García-Charton, 2013. Discordant patterns of genetic connectivity between two sympatric species, Mullus barbatus (Linnaeus, 1758) and Mullus surmuletus (Linnaeus, 1758), in south-western Mediterranean Sea. Marine Environmental Research 92: 23–34.PubMedGoogle Scholar
  37. Franchini, P., L. Sola, D. Crosetti, V. Milana & A. R. Rossi, 2012. Low levels of population genetic structure in the gilthead seabream, Sparus aurata, along the Italian coasts. ICES Journal of Marine Science 69: 41–50.Google Scholar
  38. Goodman, S. J., 1997. RSTCALC: A collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Molecular Ecology 6: 881–885.Google Scholar
  39. Goudet, J., 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Institute of Ecology, University of Lausanne, Lausanne, Switzerland.Google Scholar
  40. Hauser, L. & J. R. Carvalho, 2008. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish and Fisheries 9: 333–362.Google Scholar
  41. Hedgecock, D. & A. Pudovkin, 2011. Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bulletin of Marine Science. 87: 971–1002.Google Scholar
  42. Hewitt, G. M., 2004. The structure of biodiversity – insights from molecular phylogeography. Frontiers in Zoology 1: 4.PubMedPubMedCentralGoogle Scholar
  43. Horne, J. B., L. van Herwerden, S. Abellana & J. L. McIlwain, 2013. Observations of migrant exchange and mixing in a coral reef fish metapopulation link scales of marine population connectivity. Journal of Heredity 104: 532–546.PubMedGoogle Scholar
  44. I.I.M. Istituto Idrografico della Marina 1982 Atlante delle correnti superficiali dei mari italiani 3068.Google Scholar
  45. Jombart, T., 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403–1405.PubMedGoogle Scholar
  46. Jombart, T. & I. Ahmed, 2011. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27: 3070–3071.PubMedPubMedCentralGoogle Scholar
  47. Jombart, T., S. Devillard & F. Balloux, 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11: 94.PubMedPubMedCentralGoogle Scholar
  48. Jones, G. P., G. R. Almany, G. R. Russ, P. F. Sale, R. S. Steneck, M. J. H. van Oppen & B. L. Williset, 2009. Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28: 307–325.Google Scholar
  49. Kelly, R. P. & S. R. Palumbi, 2010. Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS ONE. 2010(5): e8594.Google Scholar
  50. Klaoudatos, S. D., G. Iakovopoulos & D. S. Klaoudatos, 2004. Pagellus erythrinus (common pandora): a promising candidate species for enlarging the diversity of aquaculture production. Aquaculture International 12: 299–320.Google Scholar
  51. Klimogianni, A., G. Koumoundouros, P. Kaspiris & M. Kentouri, 2004. Effect of temperature on the egg and yolk-sac larval development of common pandora, Pagellus erythrinus. Marine Biology 145: 1015–1022.Google Scholar
  52. Knutsen, H., P. E. Jorde, C. Andre & N. C. Stenseth, 2003. Fine-scaled geographic population structuring in a highly mobile marine species: the Atlantic cod. Molecular Ecology 12: 385–395.PubMedGoogle Scholar
  53. Latch, E. K., G. Dharmarajan, J. C. Glaubitz & O. E. Rhodes, 2006. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conservation Genetics 7: 295–302.Google Scholar
  54. Lemos, A., A. I. Freitas, A. T. Fernandes, R. Goncalves, J. Jesus & C. Andrade, 2006. Microsatellite variability in natural populations of the blackspot seabream Pagellus bogaraveo (Brünnich, 1768): a database to access parentage assignment in aquaculture. Aquaculture Research 37: 1028–1033.Google Scholar
  55. Liggins, L., E. A. Trem, H. P. Possingham & C. Riginos, 2016. Seascape features, rather than dispersal traits, predict spatial genetic patterns in co-distributed reef fishes. Journal of Biogeography 43: 256–267.Google Scholar
  56. Limborg, M. T., R. Hanel, P. V. Debes, A. K. Ring, C. André, C. S. Tsigenopoulos & D. Bekkevold, 2012. Imprints from genetic drift and mutation imply relative divergence times across marine transition zones in a pan-European small pelagic fish (Sprattus sprattus). Heredity 109: 96–107.PubMedPubMedCentralGoogle Scholar
  57. Lorenzo Ciannelli, L., H. Knutsen, E. M. Olsen, S. H. Espeland, L. Asplin, A. Jelmert, J. A. Knutsen & N. C. Stenseth, 2010. Small-scale genetic structure in a marine population in relation to water circulation and egg characteristics. Ecology 91: 2918–2930.PubMedGoogle Scholar
  58. Macpherson, E. & N. Raventos, 2006. Relationship between pelagic larval duration and geographic distribution of Mediterranean littoral fishes. Marine Ecology Progress Series 327: 257–265.Google Scholar
  59. MEDITS Biological Report 2001 [available on internet at].
  60. Millot, C. & I. Taupier-Letage, 2005. Circulation in the Mediterranean Sea. In Saliot, A. (ed.), The Mediterranean Sea Vol 5k of Handbook of Environmental Chemistry. Springer, Berlin: 29–66.Google Scholar
  61. Mitarai, S., D. A. Siegel, J. R. Watson, C. Dong & J. C. McWilliams, 2009. Quantifying connectivity in the coastal ocean with application to the Southern California Bight. Journal of Geophysical Research 114: C10026.Google Scholar
  62. Modica, M. V., V. Russini, G. Fassio & M. Oliverio, 2017. Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development. Marine Environmental Research 127: 92e101.Google Scholar
  63. Nanninga, G. B. & A. Manica, 2018. Larval swimming capacities affect genetic differentiation and range size in demersal marine fishes. Marine Ecology Progress Series 589: 1–12.Google Scholar
  64. Ovenden, J. R., J. Salini, S. O’Connor & R. Street, 2004. Pronounced genetic population structure in a potentially vagile fish species (Pristipomoides multidens, Teleostei;Perciformes; Lutjanidae) from the East Indies triangle. Molecular Ecology 13: 1991–1999.PubMedGoogle Scholar
  65. Palero, F., P. Abello, E. Macpherson, M. Gristina & M. Pascual, 2008. Phylogeography of the European spiny lobster (Palinurus elephas): influence of current oceanographical features and historical processes. Molecular Phylogenetics and Evolution 48: 708–717.PubMedGoogle Scholar
  66. Pascual, M., B. Rives, C. Schunter & E. Macpherson, 2017. Impact of life history traits on gene flow: a multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12: e0176419.PubMedPubMedCentralGoogle Scholar
  67. Piñera, J. A., D. Bernardo, G. Blanco, E. Vazquez & J. A. Sanchez, 2006. Isolation and characterization of polymorphic microsatellite markers in Pagellus bogaraveo, and cross-species amplification in Sparus aurata and Dicentrarchus labrax. Molecular Ecology Notes 6: 33–35.Google Scholar
  68. Pritchard, J. K., M. Stephens & P. Donnelly, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedPubMedCentralGoogle Scholar
  69. Ramsak, A., F. Garoia, I. Guarniero, P. Mannini & F. Tinti, 2003. Novel polymorphic microsatellite markers for the common pandora (Pagellus erythrinus). Molecular Ecology Notes 3: 553–555.Google Scholar
  70. Raymond, M. & F. Rousset, 1995. An exact test for population differentiation. Evolution 49: 1280–1283.PubMedGoogle Scholar
  71. R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0. [available on internet at].
  72. Riginos, C. & L. Liggins, 2013. Seascape genetics: populations, individuals, and genes marooned and adrift. Geography Compass 7: 197–216.Google Scholar
  73. Riginos, C., K. E. Douglas, Y. Jin, D. F. Shanahan & E. A. Treml, 2011. Effects of geography and life history traits on genetic differentiation in benthic marine fishes. Ecography 34: 566–575.Google Scholar
  74. Robitzch, V. S. N., D. Lozano-Cortés, N. M. Kandler, E. Salas & M. L. Berumen, 2016. Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea. Marine Pollution Bulletin 105: 566–574.PubMedGoogle Scholar
  75. Ryman, N. & S. Palm, 2006. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Molecular Ecology Notes 6: 600–602.Google Scholar
  76. Sabatés, A. & M. P. Olivar, 1996. Variation of larval fish distributions associated with variability in the location of a shelf-slope front. Marine Ecology Progress Series 135: 11–20.Google Scholar
  77. Sala-Bozano, M., V. Ketmaier & S. Mariani, 2009. Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Molecular Ecology 18: 4811–4826.PubMedGoogle Scholar
  78. Schunter, C., J. Carreras-Carbonell, E. Macpherson, J. Tintore, E. Vidal-Vijande, A. Guidetti & M. Pascual, 2011. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Molecular Ecology 20: 5167–5181.PubMedGoogle Scholar
  79. Selkoe, K. A., K. T. Scribner& H. M. Galindo, 2016. Waterscape Genetics – Applications of landscape genetics to rivers, lakes, and seas. In: Balkenhol, N., S. A. Cushman, A. T. Storfer, & L. P. Waits (eds) Landscape Genetics – Concepts, Methods, Applications, Wiley, Chichester, UK: 220–246.Google Scholar
  80. Silva, G., J. B. Horne & R. Castilho, 2014. Anchovies go north and west without losing diversity: post-glacial range expansions in a small pelagic fish. Journal of Biogeography 41: 1171–1182.Google Scholar
  81. Simpson, S. D., H. B. Harrison, M. R. Claereboudt & S. Planes, 2014. Long-Distance dispersal via ocean currents connects Omani clownfish populations throughout entire species range. PLoS ONE 9: e107610.PubMedPubMedCentralGoogle Scholar
  82. Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.PubMedPubMedCentralGoogle Scholar
  83. Swearer, S. E., J. E. Caselle, D. W. Lea & R. R. Warner, 1999. Larval retention and recruitment in an island population of a coral-reef fish. Nature 402: 799–802.Google Scholar
  84. Weersing, K. & R. J. Toonen, 2009. Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecology Progress Series 393: 1–12.Google Scholar
  85. Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.PubMedGoogle Scholar
  86. White, C., K. A. Selkoe, J. Watson, D. A. Siegel, D. C. Zacher & R. J. Toonen, 2010. Ocean currents help explain population genetic structure. Proceedings of the Royal Society B 277: 1685–1694.PubMedGoogle Scholar
  87. Valdés, P., A. García-Alcázar, I. Abdel, M. Arizcun, C. Suárez & E. Abellán, 2004. Seasonal changes on gonadosomatic index and maturation stages in common pandora Pagellus erythrinus (L.). Aquaculture International 12: 333–343.Google Scholar
  88. Van Etten, J., 2017. R Package gdistance: distances and routes on geographical grids. Journal of Statistical Software 76: 1–21.Google Scholar
  89. Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills & P. Shipley, 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.Google Scholar
  90. Villamor, A., F. Costantini & M. Abbiati, 2014. Genetic Structuring across marine biogeographic boundaries in rocky shore invertebrates. PLoS ONE 9: e101135.PubMedPubMedCentralGoogle Scholar
  91. Županović, Š. & I. Jardas, 1989. Fauna i flora Jadrana. Logos Split: 526 pp.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biology and Biotechnology “C. Darwin”Sapienza University of RomeRomeItaly
  2. 2.Aix-Marseille Univ, Univ Toulon, CNRS, IRD, MIO UM 110, Mediterranean Institute of OceanographyMarseilleFrance
  3. 3.Department of Environmental BiologySapienza University of RomeRomeItaly
  4. 4.Ecosystems and Aquatic Resources Research Unit (UR13AGRO1), National Agronomy Institute of Tunisia (INAT)University of CarthageTunisTunisia
  5. 5.National Research Council, CNR-IRETRomeItaly

Personalised recommendations