Advertisement

Hydrobiologia

, Volume 834, Issue 1, pp 63–74 | Cite as

Role of sediment structuring by detritus on colonization and interspecific competition of one native and one invasive submerged macrophyte

  • Mário Sérgio Dainez-FilhoEmail author
  • Thaísa Sala Michelan
  • Nayara Louback-Franco
  • Douglas Costa Souza
  • Emanuel Giovani Cafofo
  • Sidinei Magela Thomaz
Primary Research Paper
  • 83 Downloads

Abstract

The deposition of plant detritus changes sediment features, but little is known about how the accumulation of detritus affects the colonization of invasive and native submerged macrophytes. We tested the predictions that (i) submerged macrophyte occurrences correlate positively with the presence of detritus over sediment; (ii) the colonization of submerged macrophytes increases in the presence of detritus; (iii) the invasive macrophyte Hydrilla verticillata grows faster than the native macrophyte Egeria najas independent of the presence of detritus and (iv) E. najas is affected by competition with H. verticillata, and competition is mediated by the presence of detritus. We evaluated the co-occurrences of submerged macrophytes and detritus in situ and experimentally tested the effects of detritus on submerged macrophyte growth with and without competition. The presence of submerged macrophytes and detritus was negatively correlated in situ. Our experiments indicate that the detritus of emergent macrophytes, including invasive macrophytes, enhances nutrients after reflooding and increases the early growth of submerged macrophytes but does not influence the outcome of competition. Thus, the facilitation of invasive success at the beginning of detritus decomposition (indicated by our experiments) may be counteracted by negative effects after a long decomposition period (indicated by our field data).

Keywords

Extreme events Facilitation Invasibility Urochloa arrecta 

Notes

Acknowledgements

M.S. Dainez-Filho and T.S. Michelan acknowledge the National Council for Scientific and Technological Development (CNPq) for providing scholarships. S. M. Thomaz is especially thankful to CNPq for continuous funding through a Research Productivity Grant. This research was funded by Itaipu Binacional and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Proex), an organization of the Brazilian Government. We also appreciate the comments and suggestions of Associate Editor Katya Kovalenko and two anonymous referees.

Supplementary material

10750_2019_3909_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1587 kb)

References

  1. Barko, J. W. & R. M. Smart, 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67: 1328–1340.CrossRefGoogle Scholar
  2. Barko, A. J. W. & R. M. Smart, 1983. Effects of organic matter additions to sediment on the growth of aquatic plants. Journal of Ecology 71: 161–175.CrossRefGoogle Scholar
  3. Barrat-Segretain, M. H. & B. Cellot, 2007. Response of invasive macrophyte species to drawdown: the case of Elodea sp. Aquatic Botany 87: 255–261.CrossRefGoogle Scholar
  4. Bergamin, H., B. F. Reis & E. A. G. Zagatto, 1978. A new device for improving sensitivity and stabilization in flow injection analysis. Analytica Chimica Acta 97: 427–431.CrossRefGoogle Scholar
  5. Bianchini Júnior, I., M. B. Cunha-Santino, J. A. M. Milan, C. J. Rodrigues & J. H. P. Dias, 2010. Growth of Hydrilla verticillata (L.f.) Royle under controlled conditions. Hydrobiologia 644: 301–312.CrossRefGoogle Scholar
  6. Boschilia, S. M., E. F. De Oliveira & A. Schwarzbold, 2012. The immediate and long-term effects of water drawdown on macrophyte assemblages in a large subtropical reservoir. Freshwater Biology 57: 2641–2651.CrossRefGoogle Scholar
  7. Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.  https://doi.org/10.1007/s00027-010-0162-7.CrossRefGoogle Scholar
  8. Box, G. E. P. & D. R. Cox, 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B 26(2): 211–252.Google Scholar
  9. Bunn, S. E., P. M. Davies, D. M. Kellaway & I. P. Prosser, 1998. Influence of invasive macrophytes on channel morphology and hydrology in an open tropical lowland stream, and potential control by riparian shading. Freshwater Biology 39: 171–178.CrossRefGoogle Scholar
  10. Carignan, R. & J. Kalff, 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207: 987–989.CrossRefGoogle Scholar
  11. Carmignani, J. R. & A. H. Roy, 2017. Ecological impacts of winter water level drawdowns on lake littoral zones: a review. Aquatic Sciences 79: 803–824.CrossRefGoogle Scholar
  12. Craine, J. M. & R. Dybzinski, 2013. Mechanisms of plant competition for nutrients, water and light. Functional Ecology 27: 833–840.CrossRefGoogle Scholar
  13. Davis, M. A., J. P. Grime, K. Thompson, A. Davis & J. Philip, 2000. Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88: 528–534.CrossRefGoogle Scholar
  14. Fleming, J. P. & E. D. Dibble, 2015. Ecological mechanisms of invasion success in aquatic macrophytes. Hydrobiologia 746: 23–37.CrossRefGoogle Scholar
  15. Geremew, A. & L. Triest, 2018. Hydrological connectivity and vegetative dispersal shape clonal and genetic structure of the emergent macrophyte Cyperus papyrus in a tropical highland lake (Lake Tana, Ethiopia). Hydrobiologia.  https://doi.org/10.1007/s10750-017-3466-y. (in press).CrossRefGoogle Scholar
  16. Gibson, D. J., J. Connolly, D. C. Hartnett & J. D. Weidenhamer, 1999. Designs for greenhouse studies of interactions between plants [review]. Journal of Ecology 87(1): 1–16.CrossRefGoogle Scholar
  17. Giné, M. F., F. H. Bergamin, E. A. G. Zagatto & B. F. Reis, 1980. Simultaneous determination of nitrate and nitrite by flow injection analysis. Analytica Chimica Acta 114: 191–197.CrossRefGoogle Scholar
  18. Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for Physical and Chemical Analysis of Fresh Water. Blackwell Scientific, Oxford.Google Scholar
  19. Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology 38: 159–168.CrossRefGoogle Scholar
  20. Han, Y. Q., L. G. Wang, W. H. You, H. H. Yu, K. Y. Xiao & Z. H. Wu, 2018. Flooding interacting with clonal fragmentation affects the survival and growth of a key floodplain submerged macrophyte. Hydrobiologia 806: 67–75.  https://doi.org/10.1007/s10750-017-3356-3.CrossRefGoogle Scholar
  21. Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium (Lars) (Canadian special publication of fisheries and aquatic sciences). Department of Fisheries and Oceans, Ottowa: 110–127.Google Scholar
  22. Keitel, J., D. Zak & M. Hupfer, 2016. Water level fluctuations in a tropical reservoir: the impact of sediment drying, aquatic macrophyte dieback, and oxygen availability on phosphorus mobilization. Environmental Science and Pollution Research 23: 6883–6894.CrossRefGoogle Scholar
  23. Klančnik, K., I. Iskra, G. David & A. Gaberščik, 2018. The quality and quantity of light in the water column are altered by the optical properties of natant plant species. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3148-9. (in press).CrossRefGoogle Scholar
  24. Kolar, J., A. Kucerova, P. Jakubec & J. Vymazal, 2017. Seed bank of Littorella uniflora (L.) Asch in the Czech Republic, Central Europe: does burial depth and sediment type influence seed germination? Hydrobiologia 794: 347–358.CrossRefGoogle Scholar
  25. Langeland, K. A., 1996. Hydrilla verticillata (L.F) Royle (Hydrocharitaceae), “The Perfect Aquatic Weed”. Castanea 61: 293–304.Google Scholar
  26. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier Science, Amsterdam.Google Scholar
  27. Leguizamon, M., J. Hammerly, M. A. Maine, N. Suñe & M. J. Pizarro, 1992. Decomposition and nutrient liberation rates of plant material in the Parana medio River (Argentina). Hydrobiologia 230: 157–164.CrossRefGoogle Scholar
  28. Lu, J., S. J. Faggotter, S. E. Bunn & M. A. Burford, 2017. Macrophyte beds in a subtropical reservoir shifted from a nutrient sink to a source after drying then rewetting. Freshwater Biology 62: 854–867.CrossRefGoogle Scholar
  29. Madsen, T. V. & N. Cedergreen, 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology 47: 283–291.CrossRefGoogle Scholar
  30. O’Hare, M. T., F. C. Aguiar, T. Asaeda, E. S. Bakker, P. A. Chambers, J. S. Clayton, A. Elger, T. M. Ferreira, E. M. Gross, I. D. M. Gunn, A. M. Gurnell, S. Hellsten, D. E. Hofstra, W. Li, S. Mohr, S. Puijalon, K. Szoszkiewics, N. J. Wilby & K. A. Wood, 2018. Plants in aquatic ecosystems: current trends and future directions. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3190-7. (in press).CrossRefGoogle Scholar
  31. Pei, Y., L. Liu, S. Hilt, R. B. Xu, B. L. Wang, C. B. Li & X. X. Chang, 2018. Root exudated algicide of Eichhornia crassipes enhances allelopathic effects of cyanobacteria Microcystis aeruginosa on green algae. Hydrobiologia 823: 67–77.  https://doi.org/10.1007/s10750-018-3696-7.CrossRefGoogle Scholar
  32. Pitelli, R. L. C. M., R. A. Pitelli, C. J. Rodrigues & J. H. P. Dias, 2014. Aquatic plant community in porto primavera reservoir. Planta Daninha 32: 467–473.CrossRefGoogle Scholar
  33. Richards, C. L., O. Bossdorf, N. Z. Muth, J. Gurevitch & M. Pigliucci, 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9: 981–993.CrossRefGoogle Scholar
  34. Riis, T. & K. Sand-Jensen, 2006. Dispersal of plant fragments in small streams. Freshwater Biology 51: 274–286.CrossRefGoogle Scholar
  35. Sousa, W. T. Z., 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem. Hydrobiologia 669: 1–20.CrossRefGoogle Scholar
  36. Sousa, W. T. Z., S. M. Thomaz & K. J. Murphy, 2010. Response of native Egeria najas Planch. and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological regime in a subtropical river. Aquatic Botany 92: 40–48.CrossRefGoogle Scholar
  37. Strange, E. F., J. M. Hill & J. A. Coetzee, 2018. Evidence for a new regime shift between floating and submerged invasive plant dominance in South Africa. Hydrobiologia 817: 349–362.CrossRefGoogle Scholar
  38. Thomaz, S. M. & T. S. Michelan, 2011. Associations between a highly invasive species and native macrophytes differ across spatial scales. Biological Invasions 13: 1881–1891.CrossRefGoogle Scholar
  39. Thomaz, S. M., T. A. Pagioro, L. M. Bini & K. J. Murphy, 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53–59.CrossRefGoogle Scholar
  40. Thomaz, S. M., P. A. Chambers, S. A. Pierini & G. Pereira, 2007. Effects of phosphorus and nitrogen amendments on the growth of Egeria najas. Aquatic Botany 86: 191–196.  https://doi.org/10.1016/j.aquabot.2006.10.004.CrossRefGoogle Scholar
  41. Vilas, M. P., C. L. Marti, C. E. Oldham & Hipsey, 2018. Macrophyte-induced thermal stratification in a shallow urban lake promotes conditions suitable for nitrogen-fixing cyanobacteria. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3376-z. (in press).CrossRefGoogle Scholar
  42. Wang, T., J. T. Hu, C. H. Liu & D. Yu, 2017. Soil type can determine invasion success of Eichhornia crassipes. Hydrobiologia 788: 284–291.CrossRefGoogle Scholar
  43. Wassens, S., N. Ning, L. Hardwick, G. Bino & J. Maguire, 2017. Long-term changes in freshwater aquatic plant communities following extreme drought. Hydrobiologia 799: 233–247.CrossRefGoogle Scholar
  44. Weigelt, A. & P. Jolliffe, 2003. Indices of plant competition. Journal of Ecology 91: 707–720.CrossRefGoogle Scholar
  45. Wetzel, R. A. & E. G. Likens, 1991. Limnological Analyzes. Springer, New York.CrossRefGoogle Scholar
  46. Wu, J., S. Cheng, W. Liang & Z. Wu, 2009. Effects of organic-rich sediment and below-ground sulfide exposure on submerged macrophyte, hydrilla verticillata. Bulletin of Environmental Contamination and Toxicology 83: 497–501.CrossRefGoogle Scholar
  47. Xie, K., H. Yunxi, R. P. Mormul, H. Ruan, Y. Feng & M. Zhang, 2018. Fragment type and water nutrient interact and affect the survival and establishment of Myriophyllum aquaticum. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3388-8. (in press).CrossRefGoogle Scholar
  48. Xu, X., L. Yang, X. L. Huang, Z. Q. Li & D. Yu, 2018. Water brownification may not promote invasions of submergednon-native macrophytes. Hydrobiologia 817: 215–225.CrossRefGoogle Scholar
  49. Yu, L., H. Gu, C. Lou & L. Zhang, 2016. Analysis of the impact of water level fluctuations on macrophytes in Miyun Reservoir after receiving water transferred by the South-to-North Water Diversion Project. IOP Conference Series: Earth and Environmental Science 39: 1–11.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mário Sérgio Dainez-Filho
    • 1
    Email author
  • Thaísa Sala Michelan
    • 2
  • Nayara Louback-Franco
    • 1
  • Douglas Costa Souza
    • 1
  • Emanuel Giovani Cafofo
    • 1
  • Sidinei Magela Thomaz
    • 1
  1. 1.Universidade Estadual de MaringáMaringáBrazil
  2. 2.Laboratório de Ecologia e ConservaçãoUniversidade Federal do Pará, Instituto de Ciências BiológicasBelémBrazil

Personalised recommendations